Teaching Computers to Read : Effective Best Practices in Building Valuable NLP Solutions

個数:
  • 予約

Teaching Computers to Read : Effective Best Practices in Building Valuable NLP Solutions

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 232 p.
  • 言語 ENG
  • 商品コード 9781032484372

Full Description

Building Natural Language Processing (NLP) solutions that deliver ongoing business value is not straightforward. This book provides clarity and guidance on how to design, develop, deploy, and maintain NLP solutions that address real-world business problems.

In this book, we discuss the main challenges and pitfalls encountered when building NLP solutions. We also outline how technical choices interact with (and are impacted by) data, tools, the business goals, and integration between human experts and the AI solution. The best practices we cover here do not depend on the cutting-edge modeling algorithms or the architectural flavor of the month. We provide practical advice for NLP solutions that are adaptable to the solution's specific technical building blocks.

Through providing best practices across the lifecycle of NLP development, this handbook will help organizations - particularly technical teams - use critical thinking to understand how, when, and why to build NLP solutions, what the common challenges are, and how to address or avoid them. By doing so, they'll deliver consistent value to their stakeholders and deliver on the promise of AI and NLP.

A code companion for the book is available here: https://github.com/TeachingComputersToRead/TC2R-CodeCompanion

Contents

1. Natural Language Processing: Debunking Common Myths 2. The Trajectory of Natural Language Processing: Classic, Modern, and Generative 3. Large Language Models and Generative Artificial Intelligence 4. Pre-Processing and Exploratory Data Analysis for NLP 5. Framing the Task and Data Labeling 6. Data Curation for NLP Corpora 7. Machine Learning Approaches for Natural Language Problems 8. Working Across Languages in NLP 9. Evaluating Performance of NLP Solutions 10. Maintaining Value: Deploying and Monitoring NLP Solutions 11. NLPOps: The Mechanics of NLP Production at Scale 12. Ethics in Data Science and NLP 13. Key Factors for Successful NLP Solutions

最近チェックした商品