Advances on Mathematical Modeling and Optimization with Its Applications (Emerging Technologies)

個数:

Advances on Mathematical Modeling and Optimization with Its Applications (Emerging Technologies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 262 p.
  • 言語 ENG
  • 商品コード 9781032479613
  • DDC分類 003.3

Full Description

Advances on Mathematical Modeling and Optimization with Its Applications discusses optimization, equality, and inequality constraints and their application in the versatile optimizing domain. It further covers non-linear optimization methods such as global optimization, and gradient-based non-linear optimization, and their applications.

Discusses important topics including multi-component differential equations, geometric partial differential equations, and computational neural systems
Covers linear integer programming and network design problems, along with an application of the mixed integer problems
Discusses constrained and unconstrained optimization, equality, and inequality constraints, and their application in the versatile optimizing domain
Elucidates the application of statistical models, probability models, and transfer learning concepts
Showcases the importance of multi-attribute decision modeling in the domain of image processing and soft computing

The text is primarily for senior undergraduate and graduate students, and academic researchers in the fields of mathematics, statistics, and computer science.

Contents

1. Mathematical Modeling and Technology. 2. Modeling with Discrete Dynamical Systems. 3. Differential Equations in the Modeling Perception. 4. Regression Methods and Models. 5. Linear Integer Programming. 6. Mixed Integer Programming. 7. Single Variable and Multivariable Optimization. 8. Nonlinear Optimization Methods. 9. Simulation Models. 10. Model based on the Decision Making. 11. Multi-Attribute Decision Modeling. 12. Mathematical Models in Machine Learning. 13. Application of Mathematical Models in the Deep Learning Model. 14. Optimization in the Machine Learning Models.

最近チェックした商品