連合学習ハンドブック:先端、応用、機会<br>Handbook on Federated Learning : Advances, Applications and Opportunities

個数:

連合学習ハンドブック:先端、応用、機会
Handbook on Federated Learning : Advances, Applications and Opportunities

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9781032471631
  • DDC分類 006.31

Full Description

Mobile, wearable, and self-driving telephones are just a few examples of modern distributed networks that generate enormous amount of information every day. Due to the growing computing capacity of these devices as well as concerns over the transfer of private information, it has become important to process the part of the data locally by moving the learning methods and computing to the border of devices. Federated learning has developed as a model of education in these situations. Federated learning (FL) is an expert form of decentralized machine learning (ML). It is essential in areas like privacy, large-scale machine education and distribution. It is also based on the current stage of ICT and new hardware technology and is the next generation of artificial intelligence (AI). In FL, central ML model is built with all the data available in a centralised environment in the traditional machine learning. It works without problems when the predictions can be served by a central server. Users require fast responses in mobile computing, but the model processing happens at the sight of the server, thus taking too long. The model can be placed in the end-user device, but continuous learning is a challenge to overcome, as models are programmed in a complete dataset and the end-user device lacks access to the entire data package. Another challenge with traditional machine learning is that user data is aggregated at a central location where it violates local privacy policies laws and make the data more vulnerable to data violation. This book provides a comprehensive approach in federated learning for various aspects.

Contents

Introduction to Federated Learning: Methods, and Classifications. Go Local, Go Global and Go Fusion - How to pick data from various contexts. Federated Learning Architectures, Opportunities, and Applications. Secure and Private Federated Learning through Encrypted Parameter Aggregation. Navigating Privacy Concerns in Federated Learning: A GDPR-Focused Analysis. A Federated Learning Approach for Resource-Constrained IoT Security Monitoring. Efficient Federated Learning Techniques for Data Loss Prevention in Cloud Environment. Maximizing Fog Computing Efficiency with Federated Multi-Agent Deep Reinforcement Learning. Future of Medical Research with a data-driven Federated Learning Approach. Collaborative Federated Learning in Healthcare Systems. Federated Learning for Efficient Cardiac Disease Prediction based on Hyper Spectral Feature Selection using Deep Spectral Convolution Neural Network. A Federated Learning based Alzheimer's Disease Prediction. Detecting Device Sensors of Luxury Hotel Using Blockchain Based Federated Learning to Increase Customer Satisfaction. Navigating the Complexity of Macro-Tasks: Federated Learning as a Catalyst for Effective Crowd Coordination. Stock Market Prediction via Twitter Sentiment Analysis using BERT: A Federated Learning Approach.

最近チェックした商品