Machine Learning, Animated (Chapman & Hall/crc Machine Learning & Pattern Recognition)

個数:

Machine Learning, Animated (Chapman & Hall/crc Machine Learning & Pattern Recognition)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 436 p.
  • 言語 ENG
  • 商品コード 9781032462141
  • DDC分類 006.31

Full Description

The release of ChatGPT has kicked off an arms race in Machine Learning (ML), however ML has also been described as a black box and very hard to understand. Machine Learning, Animated eases you into basic ML concepts and summarizes the learning process in three words: initialize, adjust and repeat. This is illustrated step by step with animation to show how machines learn: from initial parameter values to adjusting each step, to the final converged parameters and predictions.

This book teaches readers to create their own neural networks with dense and convolutional layers, and use them to make binary and multi-category classifications. Readers will learn how to build deep learning game strategies and combine this with reinforcement learning, witnessing AI achieve super-human performance in Atari games such as Breakout, Space Invaders, Seaquest and Beam Rider.

Written in a clear and concise style, illustrated with animations and images, this book is particularly appealing to readers with no background in computer science, mathematics or statistics.

Access the book's repository at: https://github.com/markhliu/MLA

Contents

List of Figures

Preface

Section I Installing Python and Learning Animations

1. Installing Anaconda and Jupyter Notebook

2. Creating Animations

Section II Machine Learning Basics

3. Machine Learning: An Overview

4. Gradient Descent - Where the Magic Happens

5. Introduction to Neural Networks

6. Activation Functions

Section III Binary and Multi-Category Classifications

7. Binary Classifications

8. Convolutional Neural Networks

9. Multi-Category Image Classifications

Section IV Developing Deep Learning Game Strategies

10. Deep Learning Game Strategies

11. Deep Learning in the Cart Pole Game

12. Deep Learning in Multi-Player Games

13. Deep Learning in Connect Four

Section V Reinforcement Learning

14. Introduction to Reinforcement Learning

15. Q-Learning with Continuous States

16. Solving Real-World Problems with Machine Learning

Section VI Deep Reinforcement Learning

17. Deep Q-Learning

18. Policy-Based Deep Reinforcement Learning

19. The Policy Gradient Method in Breakout

20. Double Deep Q-Learning

21. Space Invaders with Double Deep Q-Learning

22. Scaling Up Double Deep Q-Learning

Bibliography

最近チェックした商品