Bayesian Meta-Analysis : A Practical Introduction

個数:

Bayesian Meta-Analysis : A Practical Introduction

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 304 p.
  • 言語 ENG
  • 商品コード 9781032451909
  • DDC分類 519.542

Full Description

Meta-analysis is the statistical combination of previously conducted studies, often from summary statistics but sometimes with individual participant data. It is widespread in life sciences and is gaining popularity in economics and beyond. In many real-life meta-analyses, challenges in the source information, such as unreported statistics or biases, can be incorporated using Bayesian methods. Bayesian Meta-Analysis: A Practical Introduction provides an approachable introduction for researchers who are new to Bayes, meta-analysis, or both. There is an emphasis on hands-on learning using a variety of software packages.

Key Features

Introductory chapters assume no prior experience or mathematical training, and are aimed at non-statistical researchers
Examples of basic meta-analyses in seven different software alternatives: BUGS, JAGS, Stan, bayesmeta, brms, Stata, and JASP
Practical advice on extracting information from studies, eliciting expert opinions, managing project decisions, and writing up findings
Discussion of specific problems, including publication bias, unreported statistics, and a mixture of study designs, with code examples
Accompanying online blog and forum, with all code and data from the book, plus more translations to different software

This book aims to bridge the gap between the researcher who wants to carry out tailored meta-analysis and the techniques they need, which have previously been available only in mathematically or computationally demanding publications.

Contents

1. A statistical inference primer. 2. What is Bayesian statistics?. 3. Common effect meta-analysis. 4. Random effects meta-analysis and heterogeneity. 5. How to extract statistics from published papers. 6. Eliciting priors. 7. Writing up your meta-analysis. 8. Using arm- and time-based statistics. 9. Network meta-analysis. 10. Individual participant data. 11. Unreported statistics. 12. Living systematic reviews and Bayesian updating. 13. Publication bias. 14. Multiple statistics. 15. Multiple outcomes or study designs. 16. Informing policy and economic evaluation. 17. Emerging topics in Bayesian meta-analysis.

最近チェックした商品