微分幾何学とその可視化<br>Differential Geometry and Its Visualization

個数:

微分幾何学とその可視化
Differential Geometry and Its Visualization

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 466 p.
  • 言語 ENG
  • 商品コード 9781032436661
  • DDC分類 516.36

Full Description

Differential Geometry and Its Visualization is suitable for graduate level courses in differential geometry, serving both students and teachers. It can also be used as a supplementary reference for research in mathematics and the natural and engineering sciences.

Differential geometry is the study of geometric objects and their properties using the methods of mathematical analysis. The classical theory of curves and surfaces in three-dimensional Euclidean space is presented in the first three chapters. The abstract and modern topics of tensor algebra, Riemannian spaces and tensor analysis are studied in the last two chapters. A great number of illustrating examples, visualizations and genuine figures created by the authors' own software are included to support the understanding of the presented concepts and results, and to develop an adequate perception of the shapes of geometric objects, their properties and the relations between them.

Features

Extensive, full colour visualisations
Numerous exercises
Self-contained and comprehensive treatment of the topic

Contents

1. Curves in Three-dimensional Euclidean Space. 1.1. Points and Vectors. 1.2. Vector-valued Functions of a Real Variable. 1.3. The General Concept of Curves. 1.4. Some Examples of Planar Curves. 1.5. The Arc Length of a Curve. 1.6. The Vectors of the Trihedron of a Curve. 1.7. Frenet's Formulae. 1.8. The Geometric Significance of Curvature and Torsion. 1.9. Osculating Circles and Spheres. 1.10. Involutes and Evolutes. 1.11. The Fundamental Theorem of Curves. 1.12. Lines of Constant Slope. 1.13. Spherical Images of a Curve. 2. Surfaces in Three-dimensional Euclidean Space. 2.1. Surfaces and Curves on Surfaces. 2.2. The Tangent Planes and Normal Vectors of a Surface. 2.3. The Arc Length, Angles and Gauss's First Fundamental Coefficients. 2.4. the Curvature of Curves on Surfaces, Geodesic and Normal Curvature. 2.5. The Normal, Principal, Gaussian and Mean Curvature. 2.6. The Shape of a Surface in the Neighbourhood of a Point. 2.7. Dupin's Indicatrix. 2.8. Lines of Curvature and Asymptotic Lines. 2.9. Triple Orthogonal Systems. 2.10. the Weingarten Equations. 3. The Intrinsic Geometry of Surfaces. 3.1. the Christoffel Symbols. 3.2. Geodesic Lines. 3.3. Geodesic Lines on Surfaces with Orthogonal Parameters. 3.4. Geodesic Lines on Surfaces of Revolution. 3.5. the Minimum Property of Geodesic Lines. 3.6. Orthogonal and Geodesic Parameters. 3.7. Levi-civitá Parallelism. 3.8. Theorema Egregium. 3.9. Maps Between Surfaces. 3.10. the Gauss-bonnet Theorem. 3.11. Minimal Surfaces. 4. Tensor Algebra and Riemannian Geometry. 4.1. Differentiable Manifolds. 4.2. Transformation of Bases. 4.3. Linear Functionals and Dual Spaces. 4.4. Tensors of Second Order. 4.5. Symmetric Bilinear Forms and Inner Products. 4.6. Tensors of Arbitary Order. 4.7. Symmetric and Anti-symmetric Tensors. 4.8. Riemann Spaces. 4.9. the Christoffel Symbols. 5. Tensor Analysis. 5.1. Covariant Differentiation. 5.2. the Covariant Derivative of an (R, S)-tensor. 5.3. the Interchange of Order for Covariant Differentiation and Ricci's Identity. 5.4. Bianchi's Identities for the Covariant Derivative of the Tensors of Curvature. 5.5. Beltrami's Differentiators. 5.6. a Geometric Meaning of the Covariant Differentiation, the Levi-civitá Parallelism. 5.7. The Fundamental Theorem for Surfaces. 5.8. A Geometric Meaning of the Riemann Tensor of Curvature. 5.9. Spaces With Vanishing Tensor of Curvature. 5.10. An Extension of Frenet's Formulae. 5.11. Riemann Normal Coordinates and the Curvature of Spaces.

最近チェックした商品