Mathematical Gnostics : Advanced Data Analysis for Research and Engineering Practice

個数:

Mathematical Gnostics : Advanced Data Analysis for Research and Engineering Practice

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 322 p.
  • 言語 ENG
  • 商品コード 9781032423517
  • DDC分類 005.7

Full Description

The book describes the theoretical principles of nonstatistical methods of data analysis but without going deep into complex mathematics. The emphasis is laid on presentation of solved examples of real data either from authors' laboratories or from open literature. The examples cover wide range of applications such as quality assurance and quality control, critical analysis of experimental data, comparison of data samples from various sources, robust linear and nonlinear regression as well as various tasks from financial analysis. The examples are useful primarily for chemical engineers including analytical/quality laboratories in industry, designers of chemical and biological processes.

Features:




Exclusive title on Mathematical Gnostics with multidisciplinary applications, and specific focus on chemical engineering.



Clarifies the role of data space metrics including the right way of aggregation of uncertain data.



Brings a new look on the data probability, information, entropy and thermodynamics of data uncertainty.



Enables design of probability distributions for all real data samples including smaller ones.



Includes data for examples with solutions with exercises in R or Python.

The book is aimed for Senior Undergraduate Students, Researchers, and Professionals in Chemical/Process Engineering, Engineering Physics, Stats, Mathematics, Materials, Geotechnical, Civil Engineering, Mining, Sales, Marketing and Service, and Finance.

Contents

1. Introductory Kindergarten. 2. Axioms. 3. Introduction to Non-Standard Thought. 4. Quantification. 5. Estimation and Ideal Gnostic Cycle. 6. Geometry. 7. Aggregation. 8. Thermodynamics of Uncertain Data. 9. Kernel estimation. 10. Probability Distribution Functions. 11. Applications of Local Distributions. 12. On the Notion of Normality. 13. Applications of Global Distribution Functions. 14. Data Censoring. 15. Gnostic Thermodynamic Analysis of Data Uncertainty. 16. Robust Estimation of a Constant. 17. Measuring the Data Uncertainty. 18. Homo- or Heteroscedastic Data. 19. Gnostic Multidimensional Regression Models. 20. Data Filtering. 21. Decision Making in Mathematical Gnostics. 22. Comparisons. 23. Advanced Production Quality Control. 24. Robust Correlation. 25. General Relations.