Advances in Complex Decision Making : Using Machine Learning and Tools for Service-Oriented Computing

個数:
電子版価格
¥10,190
  • 電子版あり

Advances in Complex Decision Making : Using Machine Learning and Tools for Service-Oriented Computing

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 112 p.
  • 言語 ENG
  • 商品コード 9781032375274
  • DDC分類 658.403

Full Description

The rapidly evolving business and technology landscape demands sophisticated decision-making tools to stay ahead of the curve. Advances in Complex Decision Making: Using Machine Learning and Tools for Service-Oriented Computing is a cutting-edge technical guide exploring the latest decision-making technology advancements. This book provides a comprehensive overview of machine learning algorithms and examines their applications in complex decision-making systems in a service-oriented framework.

The authors also delve into service-oriented computing and how it can be used to build complex systems that support decision making. Many real-world examples are discussed in this book to provide a practical insight into how discussed techniques can be applied in various domains, including distributed computing, cloud computing, IoT and other online platforms.

For researchers, students, data scientists and technical practitioners, this book offers a deep dive into the current developments of machine learning algorithms and their applications in service-oriented computing. This book discusses various topics, including Fuzzy Decisions, ELICIT, OWA aggregation, Directed Acyclic Graph, RNN, LSTM, GRU, Type-2 Fuzzy Decision, Evidential Reasoning algorithm and robust optimisation algorithms. This book is essential for anyone interested in the intersection of machine learning and service computing in complex decision-making systems.

Contents

Chapter 1 Application of Choquet-OWA Aggregation Operator to Fuse ELICIT Information

Wen He, Wei Liang, Álvaro Labella and Rosa M. Rodríguez

Chapter 2 GPipe: Using Adaptive Directed Acyclic Graphs to Run Data and Feature Pipelines with on-the-fly Transformations

José Hélio de Brum Müller, Fethi A. Rabhi and Zoran Milosevic

Chapter 3 Building an ESG Decision Making System: Challenges and Research Directions

Fethi Rabhi, Mingqin Yu, Alan Ng, Eric Lim, Felix Tan and Alan Hsiao

Chapter 4 Analysing Trust, Security and Cost of Cloud Consumer's Reviews using RNN, LSTM and GRU

Muhammad Raheel Raza, Walayat Hussain and Mehdi Rajaeian

Chapter 5 Interval Type-2 Fuzzy Decision Analysis Framework Based on Online Textual Reviews

Xiao-Hong Pan, Shi-Fan He, Diego García-Zamora and Luis Martínez

Chapter 6 Robust Comprehensive Minimum Cost Consensus Model for Multi-criteria Group Decision Making: Application in IoT Platform Selection

Yefan Han, Bapi Dutta, Diego García-Zamora and Luis Martínez

最近チェックした商品