理工系のための確率・統計とモデリング<br>Probability and Statistics for Engineering and the Sciences with Modeling using R (Textbooks in Mathematics)

個数:
電子版価格
¥20,588
  • 電子版あり

理工系のための確率・統計とモデリング
Probability and Statistics for Engineering and the Sciences with Modeling using R (Textbooks in Mathematics)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 410 p.
  • 言語 ENG
  • 商品コード 9781032330471
  • DDC分類 519.2

Full Description

Probability and statistics courses are more popular than ever. Regardless of your major or your profession, you will most likely use concepts from probability and statistics often in your career.

The primary goal behind this book is offering the flexibility for instructors to build most undergraduate courses upon it. This book is designed for either a one-semester course in either introductory probability and statistics (not calculus-based) and/or a one-semester course in a calculus-based probability and statistics course.

The book focuses on engineering examples and applications, while also including social sciences and more examples. Depending on the chapter flows, a course can be tailored for students at all levels and background.

Over many years of teaching this course, the authors created problems based on real data, student projects, and labs. Students have suggested these enhance their experience and learning. The authors hope to share projects and labs with other instructors and students to make the course more interesting for both.

R is an excellent platform to use. This book uses R with real data sets. The labs can be used for group work, in class, or for self-directed study. These project labs have been class-tested for many years with good results and encourage students to apply the key concepts and use of technology to analyze and present results.

Contents

1. Introduction to Statistical Modeling and Models and R. 2. Introduction to Data. 3. Statistical Measures. 4. Classical Probability. 5. Discrete Distributions. 6. Continuous Probability Models. 7. Other Continuous Distribution (some calculus required): Triangular, Unnamed, Beta, Gamma. 8. Sampling Distributions. 9. Estimating Parameters. 10. One Sample Hypothesis Testing. 11. Two Sample Hypothesis Testing. 12. Reliability Modeling. 13. Introduction to Regression Techniques. 14. Advanced Regression Models: Nonlinear, Sinusoidal, and Binary Logistics Regression using R. 15. ANOVA in R. 16. Two-way ANCOVA using R.

最近チェックした商品