Engineering Mathematics and Artificial Intelligence : Foundations, Methods, and Applications (Mathematics and its Applications)

個数:

Engineering Mathematics and Artificial Intelligence : Foundations, Methods, and Applications (Mathematics and its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 513 p.
  • 言語 ENG
  • 商品コード 9781032255682
  • DDC分類 620.00151

Full Description

The fields of Artificial Intelligence (AI) and Machine Learning (ML) have grown dramatically in recent years, with an increasingly impressive spectrum of successful applications. This book represents a key reference for anybody interested in the intersection between mathematics and AI/ML and provides an overview of the current research streams.

Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications discusses the theory behind ML and shows how mathematics can be used in AI. The book illustrates how to improve existing algorithms by using advanced mathematics and offers cutting-edge AI technologies. The book goes on to discuss how ML can support mathematical modeling and how to simulate data by using artificial neural networks. Future integration between ML and complex mathematical techniques is also highlighted within the book.

This book is written for researchers, practitioners, engineers, and AI consultants.

Contents

1. Multiobjective Optimization: An Overview.  2. Inverse Problems.  3. Decision Tree for Classification and Forecasting.  4. A Review of Choice Topics in Quantum Computing and Some Connections with Machine Learning.  5. Sparse Models for Machine Learning.  6. Interpretability in Machine Learning.  7. Big Data: Concepts, Techniques, and Considerations.  8. A Machine of Many Faces: On the Issue of Interface in Artificial Intelligence and Tools from User Experience.  9. Artificial Intelligence Technologies and Platforms.  10. Artificial Neural Networks.  11. Multicriteria Optimization in Deep Learning.  12. Natural Language Processing: Current Methods and Challenges.  13. AI and Imaging in Remote Sensing.  14. AI in Agriculture.  15. AI and Cancer Imaging.  16. AI in Ecommerce: From Amazon and TikTok, GPT-3 and LaMDA, to the Metaverse and Beyond.  17. The Difficulties of Clinical NLP.  18. Inclusive Green Growth in OECD Countries: Insight from The Lasso Regularization and Inferential Techniques.  19. Quality Assessment of Medical Images.  20. Securing Machine Learning Models: Notions and Open Issues.

最近チェックした商品