Graph Learning and Network Science for Natural Language Processing (Computational Intelligence Techniques)

個数:

Graph Learning and Network Science for Natural Language Processing (Computational Intelligence Techniques)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9781032224565
  • DDC分類 006.35

Full Description

Advances in graph-based natural language processing (NLP) and information retrieval tasks have shown the importance of processing using the Graph of Words method. This book covers recent concrete information, from the basics to advanced level, about graph-based learning, such as neural network-based approaches, computational intelligence for learning parameters and feature reduction, and network science for graph-based NPL. It also contains information about language generation based on graphical theories and language models.

Features:

Presents a comprehensive study of the interdisciplinary graphical approach to NLP
Covers recent computational intelligence techniques for graph-based neural network models
Discusses advances in random walk-based techniques, semantic webs, and lexical networks
Explores recent research into NLP for graph-based streaming data
Reviews advances in knowledge graph embedding and ontologies for NLP approaches

This book is aimed at researchers and graduate students in computer science, natural language processing, and deep and machine learning.

Contents

1. Graph of Words Model for Natural Language Processing. 2. Application of NLP Using Graph Approaches. 3. Graph-based Extractive Approach for English and Hindi Text Summarization. 4. Graph Embeddings for Natural Language Processing. 5. Natural Language Processing with Graph and Machine Learning Algorithms-based Large-scale Text Document Summarization and Its Applications. 6. Ontology and Knowledge Graphs for Semantic Analysis in Natural Language Processing. 7. Ontology and Knowledge Graphs for Natural Language Processing. 8 Perfect Coloring by HB Color Matrix Algorithm Method. 9 Cross-lingual Word Sense Disambiguation Using Multilingual Co-occurrence Graphs. 10 Study of Current Learning Techniques for Natural Language Processing for Early Detection of Lung Cancer. 11 A Critical Analysis of Graph Topologies for Natural Language Processing and Their Applications. 12 Graph-based Text Document Extractive Summarization. 13 Applications of Graphical Natural Language Processing. 14 Analysis of Medical Images Using Machine Learning Techniques.

最近チェックした商品