データ分析のためのRとPython:両面からの入門<br>An Introduction to R and Python for Data Analysis : A Side-By-Side Approach

個数:
電子版価格
¥16,727
  • 電子版あり

データ分析のためのRとPython:両面からの入門
An Introduction to R and Python for Data Analysis : A Side-By-Side Approach

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 246 p.
  • 言語 ENG
  • 商品コード 9781032203256
  • DDC分類 005.13

Full Description

An Introduction to R and Python for Data Analysis helps teach students to code in both R and Python simultaneously. As both R and Python can be used in similar manners, it is useful and efficient to learn both at the same time, helping lecturers and students to teach and learn more, save time, whilst reinforcing the shared concepts and differences of the systems. This tandem learning is highly useful for students, helping them to become literate in both languages, and develop skills which will be handy after their studies. This book presumes no prior experience with computing, and is intended to be used by students from a variety of backgrounds. The side-by-side formatting of this book helps introductory graduate students quickly grasp the basics of R and Python, with the exercises providing helping them to teach themselves the skills they will need upon the completion of their course, as employers now ask for competency in both R and Python. Teachers and lecturers will also find this book useful in their teaching, providing a singular work to help ensure their students are well trained in both computer languages. All data for exercises can be found here: https://github.com/tbrown122387/r_and_python_book/tree/master/data. Instructors can access the solutions manual via the book's website.

Key features:

- Teaches R and Python in a "side-by-side" way.

- Examples are tailored to aspiring data scientists and statisticians, not software engineers.

- Designed for introductory graduate students.

- Does not assume any mathematical background.

Contents

1. Introduction 2. Basic Types 3. R vectors versus Numpy arrays and Pandas' Series 4. Numpy ndarrays Versus R's matrix and array Types 5. R's lists Versus Python's lists and dicts 6. Functions 7. Categorical Data 8. Data Frames Part 1. Introducing the Basics 10. Using Third-Party Code 11. Control Flow 12. Reshaping and Combining Data Sets 13. Visualization Part 2. Common Tasks and Patterns 14. An Introduction to Object-Oriented Programming 15. An Introduction to Functional Programming

最近チェックした商品