Bayesian Analysis of Capture-Recapture Data with Hidden Markov Models : Theory and Case Studies in R (Chapman & Hall/crc Interdisciplinary Statistics)

個数:
  • 予約

Bayesian Analysis of Capture-Recapture Data with Hidden Markov Models : Theory and Case Studies in R (Chapman & Hall/crc Interdisciplinary Statistics)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 360 p.
  • 言語 ENG
  • 商品コード 9781032154237

Full Description

Bayesian Analysis of Capture-Recapture Data with Hidden Markov Models: Theory and Case Studies in R and NIMBLE introduces ecologists and statisticians to a powerful and unifying framework for analysing capture-recapture data. Hidden Markov models (HMMs) have become a cornerstone in modern population ecology, offering a flexible way to decompose complex processes such as survival, recruitment, and dispersal into simpler building blocks, while explicitly accounting for the fact that we only observe imperfect data rather than the true underlying states. Combined with Bayesian inference, HMMs provide a natural and transparent approach to handle uncertainty, explore model structures, and draw robust conclusions. This book illustrates how to bring these ideas to life using the R package NIMBLE, a fast-developing environment for building and fitting hierarchical models.

Key features include:
• A clear introduction to the principles of Bayesian statistics, HMMs, and the NIMBLE package
• Step-by-step tutorials showing how to implement a wide range of capture-recapture models for open populations
• Fully reproducible examples with data and R code, following a "learning by doing" philosophy
• Case studies drawn from the ecological literature, illustrating how to apply methods to real-world conservation questions
• Practical guidance on model specification, coding strategies, and interpretation of results

Written in an accessible style, this book is designed for ecologists, wildlife biologists, and conservation scientists who already use R and wish to deepen their modelling toolkit, as well as statisticians interested in ecological applications. Beginners will find a self-contained path into Bayesian capture-recapture modelling, while experienced researchers will discover a flexible framework to extend and adapt to their own data and questions.

Contents

1. Bayesian statistics & MCMC. 2. NIMBLE tutorial. 3. Hidden Markov models. 4. Alive and dead. 5. Sites and states. 6. Dealing with covariates. 7. Addressing model lack of fit. 8. Quantifying life history traits.

最近チェックした商品