Applied Learning Algorithms for Intelligent IoT

個数:

Applied Learning Algorithms for Intelligent IoT

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9781032113210
  • DDC分類 006.31

Full Description

This book vividly illustrates all the promising and potential machine learning (ML) and deep learning (DL) algorithms through a host of real-world and real-time business use cases. Machines and devices can be empowered to self-learn and exhibit intelligent behavior. Also, Big Data combined with real-time and runtime data can lead to personalized, prognostic, predictive, and prescriptive insights. This book examines the following topics:




Cognitive machines and devices



Cyber physical systems (CPS)



The Internet of Things (IoT) and industrial use cases



Industry 4.0 for smarter manufacturing



Predictive and prescriptive insights for smarter systems



Machine vision and intelligence



Natural interfaces



K-means clustering algorithm



Support vector machine (SVM) algorithm



A priori algorithms



Linear and logistic regression



Applied Learning Algorithms for Intelligent IoT clearly articulates ML and DL algorithms that can be used to unearth predictive and prescriptive insights out of Big Data. Transforming raw data into information and relevant knowledge is gaining prominence with the availability of data processing and mining, analytics algorithms, platforms, frameworks, and other accelerators discussed in the book. Now, with the emergence of machine learning algorithms, the field of data analytics is bound to reach new heights.

This book will serve as a comprehensive guide for AI researchers, faculty members, and IT professionals. Every chapter will discuss one ML algorithm, its origin, challenges, and benefits, as well as a sample industry use case for explaining the algorithm in detail. The book's detailed and deeper dive into ML and DL algorithms using a practical use case can foster innovative research.

Contents

1. Convolutional Neural Network in Computer Vision. 2. Trends and Transition in the Machine Learning (ML) Space. 3. Deep Learning: Algorithms, Platforms, Applications, and Research Trends in IoT. 4. The Next-Generation IoT Use Cases across Industry Verticals using Machine and Deep Learning Algorithms. 5. A Panoramic View of Cyber Attack Detection and Prevention Using Machine Learning and Deep Learning Approaches. 6. Regression Algorithms in Machine Learning. 7. Machine Learning Based Industrial Internet of Things (IIoT) and Its Applications. 8. Employee Turnover Prediction Using Single Voting Model. 9. A Novel Implementation of Sentiment Analysis towards Data Science. 10. Conspectus of K-Means Clustering Algorithm. 11. Systematic Approach to Deal with Internal Fragmentation and Enhancing Memory Space during COVID-19. 12. IoT Automated Spy Drone to Detect and Alert Illegal Drug Plants for Law Enforcement. 13. Expounding K-Means-inspired Network Partitioning Algorithm for SDN Controller Placement . 14. An Intelligent Deep Learning Based Wireless Underground Sensor System for IoT Based Agricultural Application. 15. Predicting Effectiveness of Solar Pond Heat Exchanger with LTES Containing CUO Nanoparticle Using Machine Learning.

最近チェックした商品