Handbook of Sharing Confidential Data : Differential Privacy, Secure Multiparty Computation, and Synthetic Data (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

個数:

Handbook of Sharing Confidential Data : Differential Privacy, Secure Multiparty Computation, and Synthetic Data (Chapman & Hall/crc Handbooks of Modern Statistical Methods)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 333 p.
  • 言語 ENG
  • 商品コード 9781032028033
  • DDC分類 005.8

Full Description

Statistical agencies, research organizations, companies, and other data stewards that seek to share data with the public face a challenging dilemma. They need to protect the privacy and confidentiality of data subjects and their attributes while providing data products that are useful for their intended purposes. In an age when information on data subjects is available from a wide range of data sources, as are the computational resources to obtain that information, this challenge is increasingly difficult. The Handbook of Sharing Confidential Data helps data stewards understand how tools from the data confidentiality literature—specifically, synthetic data, formal privacy, and secure computation—can be used to manage trade-offs in disclosure risk and data usefulness.

Key features:

• Provides overviews of the potential and the limitations of synthetic data, differential privacy, and secure computation

• Offers an accessible review of methods for implementing differential privacy, both from methodological and practical perspectives

• Presents perspectives from both computer science and statistical science for addressing data confidentiality and privacy

• Describes genuine applications of synthetic data, formal privacy, and secure computation to help practitioners implement these approaches

The handbook is accessible to both researchers and practitioners who work with confidential data. It requires familiarity with basic concepts from probability and data analysis.

Contents

1. Introduction Part 1. The Big Picture 2. Protecting Confidential Data through Non-Statistical Methods 3. 21st Century Statistical Disclosure Limitation: Motivations and Challenges Part 2. Formal Privacy Techniques 4. Review of Popular Algorithms for Differential Privacy 5. Privacy Implications of Practical Model Design Choices 6. Query answering for tabular data 7. Machine learning with differential privacy 8. Statistical Inference and Differential Privacy 9. Systems Issues in Formally Private Systems Part 3. Synthetic Data 10. Synthetic Data 11. Methods for Synthetic Data Generation 12. Validation Services for Confidential Data Part 4. Secure Multiparty Computation 13. Privacy-Preserving Distributed Computation 14. Differential Privacy and Cryptography 15. Overview of Secure Multi-Party Computation Applications in Health Research and Social Sciences Part 5. Use Cases 16. Differential Privacy Implementations 17. Synthpop a tool to enable more flexible use of sensitive data within the Scottish Longitudinal Study 18. Safe Data Technologies: Safely Expanding Access to Administrative Tax Data 19. Secure Federated Learning: Integrated Statistical Modeling for Healthcare Applications

最近チェックした商品