Determining Provenance from Compositional Data (Elements in Current Archaeological Tools and Techniques)

個数:
  • 予約

Determining Provenance from Compositional Data (Elements in Current Archaeological Tools and Techniques)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 75 p.
  • 言語 ENG
  • 商品コード 9781009634168

Full Description

Traditionally, classical multivariate statistical methods have been applied to relate cultural materials recovered at archaeological sites to their respective raw material sources. However, when reviewing published research, which usually claims to have reached a high degree of confidence in the assignment of materials, the authors have detected that those applying these methods can make serious errors that compromise the inferences made. This Element reconsiders the use of statistical methods to address the problem of provenance analysis of archaeological materials using a step-by-step procedure that allows the recognition of natural groups in the data, thus obtaining better quality classifications while avoiding the problems of total or partial overlaps in the chemical groups (common in biplots). To evaluate the methods proposed here, the challenge of group search in ceramic materials is addressed using algorithms derived from model-based clustering. For cases with partial data labeling, a semi-supervised algorithm is applied to obsidian samples.

Contents

1. Introduction; 2. Sample size; 3. Imputation of missing values; 4. Data transformation; 5. Data diagnosis; 6. Dimensionality reduction; 7. Model validation; 8. Compositional study of archaeological pottery: example for variable selection; 9. Compositional study of obsidian materials: example of semi-supervised classification; 10. Final comments; References.

最近チェックした商品