Acting, Planning, and Learning

個数:

Acting, Planning, and Learning

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 632 p.
  • 言語 ENG
  • 商品コード 9781009579384
  • DDC分類 006.3

Full Description

AI's next big challenge is to master the cognitive abilities needed by intelligent agents that perform actions. Such agents may be physical devices such as robots, or they may act in simulated or virtual environments through graphic animation or electronic web transactions. This book is about integrating and automating these essential cognitive abilities: planning what actions to undertake and under what conditions, acting (choosing what steps to execute, deciding how and when to execute them, monitoring their execution, and reacting to events), and learning about ways to act and plan. This comprehensive, coherent synthesis covers a range of state-of-the-art approaches and models -deterministic, probabilistic (including MDP and reinforcement learning), hierarchical, nondeterministic, temporal, spatial, and LLMs -and applications in robotics. The insights it provides into important techniques and research challenges will make it invaluable to researchers and practitioners in AI, robotics, cognitive science, and autonomous and interactive systems.

Contents

About the authors; Foreword; Preface; Acknowledgements; 1. Introduction; Part I. Deterministic State-Transition Systems: 2. Deterministic representation and acting; 3. Planning with deterministic models; 4. Learning deterministic models; Part II. Hierarchical Task Networks: 5. HTN representation and planning; 6. Acting with HTNs; 7. Learning HTN methods; Part III. Probabilistic Models: 8. Probabilistic representation and acting; 9. Planning with probabilistic models; 10. Reinforcement learning; Part IV. Nondeterministic Models: 11. Acting with nondeterministic models; 12. Planning with nondeterministic models; 13. Learning nondeterministic models; Part V. Hierarchical Refinement Models: 14. Acting with hierarchical refinement; 15. Hierarchical refinement planning; 16. Learning hierarchical refinement models; Part VI. Temporal Models: 17. Temporal representation and planning; 18. Acting with temporal controllability; 19. Learning for temporal acting and planning; Part VII. Motion and Manipulation Models in Robotics: 20. Motion and manipulation actions; 21. Task and motion planning; 22. Learning for movement actions; Part VIII. Other Topics and Perspectives: 23. Large language models for acting and planning; 24. Perceiving, monitoring and goal reasoning; A. Graphs and search; B. Other mathematical background; List of algorithms; Bibliographic abbreviations; References; Index.

最近チェックした商品