Polynomial Functors : A Mathematical Theory of Interaction (London Mathematical Society Lecture Note Series)

個数:
  • 予約

Polynomial Functors : A Mathematical Theory of Interaction (London Mathematical Society Lecture Note Series)

  • 現在予約受付中です。出版後の入荷・発送となります。
    重要:表示されている発売日は予定となり、発売が延期、中止、生産限定品で商品確保ができないなどの理由により、ご注文をお取消しさせていただく場合がございます。予めご了承ください。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 483 p.
  • 言語 ENG
  • 商品コード 9781009576710
  • DDC分類 511.322

Full Description

Everywhere one looks, one finds dynamic interacting systems: entities expressing and receiving signals between each other and acting and evolving accordingly over time. In this book, the authors give a new syntax for modeling such systems, describing a mathematical theory of interfaces and the way they connect. The discussion is guided by a rich mathematical structure called the category of polynomial functors. The authors synthesize current knowledge to provide a grounded introduction to the material, starting with set theory and building up to specific cases of category-theoretic concepts such as limits, adjunctions, monoidal products, closures, comonoids, comodules, and bicomodules. The text interleaves rigorous mathematical theory with concrete applications, providing detailed examples illustrated with graphical notation as well as exercises with solutions. Graduate students and scholars from a diverse array of backgrounds will appreciate this common language by which to study interactive systems categorically.

Contents

Part I. The Category of Polynomial Functors: 1. Representable functors from the category of sets; 2. Polynomial functors; 3. The category of polynomial functors; 4. Dynamical systems as dependent lenses; 5. More categorical properties of polynomials; Part II. A Different Category of Categories: 6. The composition product; 7. Polynomial comonoids and retrofunctors; 8. Categorical properties of polynomial comonoids; 9. Future work in polynomial functors; References; Index.

最近チェックした商品