Time-Variant and Quasi-separable Systems : Matrix Theory, Recursions and Computations

個数:

Time-Variant and Quasi-separable Systems : Matrix Theory, Recursions and Computations

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 330 p.
  • 言語 ENG
  • 商品コード 9781009455626
  • DDC分類 512.9434

Full Description

Matrix theory is the lingua franca of everyone who deals with dynamically evolving systems, and familiarity with efficient matrix computations is an essential part of the modern curriculum in dynamical systems and associated computation. This is a master's-level textbook on dynamical systems and computational matrix algebra. It is based on the remarkable identity of these two disciplines in the context of linear, time-variant, discrete-time systems and their algebraic equivalent, quasi-separable systems. The authors' approach provides a single, transparent framework that yields simple derivations of basic notions, as well as new and fundamental results such as constrained model reduction, matrix interpolation theory and scattering theory. This book outlines all the fundamental concepts that allow readers to develop the resulting recursive computational schemes needed to solve practical problems. An ideal treatment for graduate students and academics in electrical and computer engineering, computer science and applied mathematics.

Contents

Part I. Lectures on Basics, with Examples: 1. A first example: optimal quadratic control; 2. Dynamical systems; 3. LTV (quasi-separable) systems; 4. System identification; 5. State equivalence, state reduction; 6. Elementary operations; 7. Inner operators and external factorizations; 8. Inner-outer factorization; 9. The Kalman filter as an application; 10. Polynomial representations; 11. Quasi-separable Moore-Penrose inversion; Part II. Further Contributions to Matrix Theory: 12. LU (spectral) factorization; 13. Matrix Schur interpolation; 14. The scattering picture; 15. Constrained interpolation; 16. Constrained model reduction; 17. Isometric embedding for causal contractions; Appendix. Data model and implementations; References; Index.

最近チェックした商品