Generalized Additive Models for Location, Scale and Shape : A Distributional Regression Approach, with Applications (Cambridge Series in Statistical and Probabilistic Mathematics)

個数:

Generalized Additive Models for Location, Scale and Shape : A Distributional Regression Approach, with Applications (Cambridge Series in Statistical and Probabilistic Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 306 p.
  • 言語 ENG
  • 商品コード 9781009410069
  • DDC分類 519.536

Full Description

An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.

Contents

Preface; Notation and Termanology; Part I. Introduction and Basics: 1. Distributional Regression Models; 2. Distributions; 3. Additive Model Terms; Part II. Statistical Inference in GAMLSS: 4. Inferential Methods; 5. Penalized Maximum Likelihood Inference; 6. Bayesian Inference; 7. Statistical Boosting for GAMLSS; Part. III Applications and Case Studies: 8. Fetal Ultrasound; 9. Speech Intelligibility Testing; 10. Social Media Post Performance; 11. Childhood Undernutrition in India; 12. Socioeconomic Determinants of Federal Election Outcomes in Germany; 13. Variable Selection for Gene Expression Data; Appendix A. Continuous Distributions; Appendix B. Discrete Distributions; Bibliography; Index.

最近チェックした商品