データサイエンスの脈絡的理解:基盤・課題・好機<br>Data Science in Context : Foundations, Challenges, Opportunities

個数:

データサイエンスの脈絡的理解:基盤・課題・好機
Data Science in Context : Foundations, Challenges, Opportunities

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 335 p.
  • 言語 ENG
  • 商品コード 9781009272209
  • DDC分類 006.312

Full Description

Data science is the foundation of our modern world. It underlies applications used by billions of people every day, providing new tools, forms of entertainment, economic growth, and potential solutions to difficult, complex problems. These opportunities come with significant societal consequences, raising fundamental questions about issues such as data quality, fairness, privacy, and causation. In this book, four leading experts convey the excitement and promise of data science and examine the major challenges in gaining its benefits and mitigating its harms. They offer frameworks for critically evaluating the ingredients and the ethical considerations needed to apply data science productively, illustrated by extensive application examples. The authors' far-ranging exploration of these complex issues will stimulate data science practitioners and students, as well as humanists, social scientists, scientists, and policy makers, to study and debate how data science can be used more effectively and more ethically to better our world.

Contents

Introduction; Part I. Data Science: 1. Foundations of data science; 2. Data science is transdisciplinary; 3. A framework for ethical considerations; Recap of Part I - Data Science; Part II. Applying Data Science: 4. Data science applications: six examples; 5. The analysis rubric; 6. Applying the analysis rubric; 7. A principlist approach to ethical considerations; Recap of Part II - Transitioning from Examples and Learnings to Challenges; Part III. Challenges in Applying Data Science: 8. Tractable data; 9. Building and deploying models; 10. Dependability; 11. Understandability; 12. Setting the right objectives; 13. Toleration of failures; 14. Ethical, legal, and societal challenges; Recap of Part III - Challenges in Applying Data Science; Part IV. Addressing Concerns: 15. Societal concerns; 16. Education and intelligent discourse; 17. Regulation; 18. Research and development; 19. Quality and ethical governance; Recap of Part IV - Addressing Concerns: 20. Concluding thoughts; Appendix. Summary of recommendations from Part IV; About the authors; References; Index.

最近チェックした商品