- ホーム
- > 洋書
- > 英文書
- > Science / Mathematics
Full Description
This volume provides a comprehensive introduction to the theory of d-wave superconductivity, focused on d-wave pairing symmetry and its physical consequences in the superconducting state. It discusses the basic concepts and methodologies related to high-temperature superconductivity and compares experimental phenomena with theoretical predictions. After a brief introduction to the basic theory of superconductivity and several models for high-temperature superconductivity, this book presents detailed derivations and explanations for various single-particle and collective properties of d-wave superconductors that can be monitored experimentally, including thermodynamics, angular-resolved photo-emission, single-particle and Josephson tunnelling, impurity scattering, magnetic and superfluid responses, transport and optical properties and mixed states. Various universal behaviours of d-wave superconductors are highlighted. Aimed primarily at graduate students and research scientists in condensed matter and materials physics, this text enables readers to understand systematically the physical properties of high-temperature superconductors.
Contents
1. Introduction to superconductivity; 2. Microscopic models for high temperature superconductors; 3. Basic properties of d-wave superconductors; 4. Quasiparticle excitation spectra; 5. Tunneling effect; 6. Josephson effect; 7. Single impurity scattering; 8. Many-impurity scattering; 9. Superfluid response; 10. Optical and thermal conductivities; 11. Raman spectroscopy; 12. Nuclear magnetic resonance; 13. Neutron scattering spectroscopy; 14. Mixed state; Appendices; Bibliography; Index.