Optimizing Decision Making in the Apparel Supply Chain Using Artificial Intelligence (AI) : From Production to Retail (Woodhead Publishing Series in Textiles)

個数:
電子版価格
¥29,722
  • 電子版あり
  • ポイントキャンペーン

Optimizing Decision Making in the Apparel Supply Chain Using Artificial Intelligence (AI) : From Production to Retail (Woodhead Publishing Series in Textiles)

  • ウェブストア価格 ¥38,788(本体¥35,262)
  • Woodhead Publishing Ltd(2013/01発売)
  • 外貨定価 UK£ 125.00
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,760pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 256 p.
  • 言語 ENG
  • 商品コード 9780857097798
  • DDC分類 677.0028563

Full Description

Practitioners in apparel manufacturing and retailing enterprises in the fashion industry, ranging from senior to front line management, constantly face complex and critical decisions. There has been growing interest in the use of artificial intelligence (AI) techniques to enhance this process, and a number of AI techniques have already been successfully applied to apparel production and retailing. Optimizing decision making in the apparel supply chain using artificial intelligence (AI): From production to retail provides detailed coverage of these techniques, outlining how they are used to assist decision makers in tackling key supply chain problems. Key decision points in the apparel supply chain and the fundamentals of artificial intelligence techniques are the focus of the opening chapters, before the book proceeds to discuss the use of neural networks, genetic algorithms, fuzzy set theory and extreme learning machines for intelligent sales forecasting and intelligent product cross-selling systems.

Contents

Woodhead Publishing Series in Textiles

Preface

Acknowledgements

Chapter 1: Understanding key decision points in the apparel supply chain

Abstract:

1.1 Introduction

1.2 Selection of plant locations

1.3 Production scheduling and assembly line balancing control

1.4 Cutting room

1.5 Retailing

Chapter 2: Fundamentals of artificial intelligence techniques for apparel management applications

Abstract:

2.1 Artificial intelligence (AI) techniques: a brief overview

2.2 Rule-based expert systems

2.3 Evolutionary optimization techniques

2.4 Feedforward neural networks (FNNs)

2.5 Fuzzy logic

2.6 Conclusions

Chapter 3: Selecting the location of apparel manufacturing plants using neural networks

Abstract:

3.1 Introduction

3.2 Classification methods using artificial neural networks

3.3 Classifying decision models for the location of clothing plants

3.4 Classification using unsupervised artificial neural networks (ANN)

3.5 Classification using supervised ANN

3.6 Conclusion

3.7 Acknowledgements

3.9 Appendix: performance of back propagation (BP) and learning vector quantization (LVQ) with a different number of hidden neurons

Chapter 4: Optimizing apparel production order planning scheduling using genetic algorithms

Abstract:

4.1 Introduction

4.2 Problem formulation

4.3 Dealing with uncertain completion and start times

4.4 Genetic algorithms for order scheduling

4.5 Experimental results and discussion

4.6 Conclusions

4.7 Acknowledgement

Chapter 5: Optimizing cut order planning in apparel production using evolutionary strategies

Abstract:

5.1 Introduction

5.2 Formulation of the cut order planning (COP) decision-making model

5.3 Genetic COP optimization

5.4 An example of a genetic optimization model for COP

5.5 Conclusions

5.6 Acknowledgement

5.8 Appendix: comparison between industrial practice and proposed COP decision-making model

Chapter 6: Optimizing marker planning in apparel production using evolutionary strategies and neural networks

Abstract:

6.1 Introduction

6.2 Packing method for optimized marker packing

6.3 Evolutionary strategy (ES) for optimizing marker planning

6.4 Experiments to evaluate performance

6.5 Conclusion

Chapter 7: Optimizing fabric spreading and cutting schedules in apparel production using genetic algorithms and fuzzy set theory

Abstract:

7.1 Introduction

7.2 Problem formulation in fabric-cutting operations

7.3 Genetic optimization of fabric scheduling

7.4 Case studies using real production data

7.5 Conclusions

7.6 Acknowledgement

7.8 Appendix: nomenclature

Chapter 8: Optimizing apparel production systems using genetic algorithms

Abstract:

8.1 Introduction

8.2 Problem formulation in sewing operations

8.3 Genetic optimization of production line balancing

8.4 Experimental results

8.5 Conclusions

8.6 Acknowledgement

8.8 Appendix: nomenclature

Chapter 9: Intelligent sales forecasting for fashion retailing using harmony search algorithms and extreme learning machines

Abstract:

9.1 Introduction

9.2 Hybrid intelligent model for medium-term fashion sales forecasting

9.3 Evaluating model performance with real sales data

9.4 Experimental results and analysis

9.5 Assessing forecasting performance

9.6 Conclusions

6.7 Acknowledgement

Chapter 10: Intelligent product cross-selling system in fashion retailing using radio frequency identification (RFID) technology, fuzzy logic and rule-based expert system

Abstract:

10.1 Introduction

10.2 Radio frequency identification (RFID)-enabled smart dressing system (SDS)

10.3 Intelligent product cross-selling system (IPCS)

10.4 Implementation of the RFID-enabled SDS and IPCS

10.5 Evaluation of the RFID-enabled SDS

10.6 Assessing the use of RFID technology in fashion retailing

10.7 Conclusions

10.8 Acknowledgement

Index

最近チェックした商品