Advanced Composites in Bridge Construction and Repair

個数:
電子版価格
¥27,079
  • 電子版あり

Advanced Composites in Bridge Construction and Repair

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9780857096944
  • DDC分類 624.2

Full Description

Advanced composite materials for bridge structures are recognized as a promising alternative to conventional construction materials such as steel.

After an introductory overview and an assessment of the characteristics of bonds between composites and quasi-brittle structures, Advanced Composites in Bridge Construction and Repair reviews the use of advanced composites in the design and construction of bridges, including damage identification and the use of large rupture strain fiber-reinforced polymer (FRP) composites. The second part of the book presents key applications of FRP composites in bridge construction and repair, including the use of all-composite superstructures for accelerated bridge construction, engineered cementitious composites for bridge decks, carbon fiber-reinforced polymer composites for cable-stayed bridges and for repair of deteriorated bridge substructures, and finally the use of FRP composites in the sustainable replacement of ageing bridge superstructures.

Advanced Composites in Bridge Construction and Repair is a technical guide for engineering professionals requiring an understanding of the use of composite materials in bridge construction.

Contents

Contributor contact details
Woodhead Publishing Series in Civil and Structural Engineering
Preface
Part I: General issues

1. Using fiber-reinforced polymer (FRP) composites in bridge construction and monitoring their performance: an overview

Abstract:
1.1 Introduction
1.2 Fiber-reinforced polymer (FRP) composites for bridge construction
1.3 Monitoring problems in bridges using FRP composites
1.4 Common nondestructive evaluation/testing (NDE/NDT) methods for bridges using FRP composites
1.5 Case study: monitoring a bridge with an FRP composite stay-in-place (SIP) formwork and an FRP composite reinforced concrete deck
1.6 Future trends
1.7 Sources of further information and advice
1.8 References

2. Prestressed fiber-reinforced polymer (FRP) composites for concrete structures in flexure: fundamentals to applications

Abstract:
2.1 Introduction
2.2 Types and characteristics of fiber-reinforced polymer (FRP) composites
2.3 Using FRP composites in structures: design and applications
2.4 Internally bonded FRP tendons
2.5 Internally unbonded FRP tendons
2.6 Externally unbonded FRP tendons
2.7 Externally bonded post-tensioned FRP laminate
2.8 Near-surface-mounted post-tensioned FRP bars
2.9 Bond characteristics and deformability
2.10 Conclusions and future trends
2.11 Acknowledgment
2.12 References

3. Analyzing bond characteristics between composites and quasi-brittle substrates in the repair of bridges and other concrete structures

Abstract:
3.1 Introduction
3.2 Experimental investigation of debonding
3.3 Fracture mechanics approach to the analysis of debonding
3.4 Numerical analysis of the fiber-reinforced polymer (FRP)-concrete interface
3.5 Design aspects related to debonding
3.6 Future trends
3.7 Acknowledgments
3.8 References

4. Identifying damage in honeycomb fiber-reinforced polymer (FRP) composite sandwich bridge decks

Abstract:
4.1 Introduction
4.2 The damage severity correction factor (DSCF) method for damage identification: theory
4.3 DSCF-based damage identification method: key steps
4.4 Experimental verification of the DSCF-based damage identification method
4.5 Implementing the DSCF-based damage identification method with the experimental data
4.6 Using numerical modal analysis to identify damage
4.7 Damage identification using numerical data
4.8 Conclusions
4.9 Acknowledgments
4.10 References

5. Large rupture strain (LRS) fibre-reinforced polymer (FRP) composites for seismic retrofit of reinforced concrete (RC) piers

Abstract:
5.1 Introduction
5.2 Properties of large rupture strain (LRS) fibre-reinforced polymer (FRP) composites
5.3 LRS FRP-confined concrete under monotonie compressive loading
5.4 LRS FRP-confined concrete under cyclic compressive loading
5.5 Seismic retrofit of reinforced concrete (RC) piers using LRS FRP composites
5.6 Acknowledgements
5.7 References



Part II: Applications

6. All-composite superstructures for accelerated bridge construction

Abstract:
6.1 Introduction
6.2 Structural analysis and design
6.3 Manufacture and installation
6.4 In-service structural performance evaluation
6.5 Construction time and costs
6.6 Conclusions
6.7 Acknowledgment
6.8 References

7. Engineered cementitious composites for bridge decks

Abstract:
7.1 Introduction
7.2 Engineered cementitious composites (ECCs) design theory
7.3 ECC mechanical properties and durability
7.4 ECC application in bridges
7.5 Conclusions
7.6 References

8. The use of carbon fiber-reinforced polymer (CFRP) composites for cable-stayed bridges

Abstract:
8.1 Introduction
8.2 Design of carbon fiber-reinforced polymer (CFRP) bridge decks
8.3 Design of CFRP stay cables
8.4 Design of CFRP-steel hybrid stay cables
8.5 Case study: 1400 m cable-stayed bridges
8.6 Conclusions and future trends
8.7 Acknowledgments
8.8 References

9. Repair of deteriorated bridge substructures using carbon fiber-reinforced polymer (CFRP) composites

Abstract:
9.1 Introduction
9.2 Investigating deterioration of concrete in bridges
9.3 Analysis of concrete deterioration in bridge substructures
9.4 Repair of bridges using carbon fiber-reinforced polymer (CFRP) composites
9.5 Review of CFRP repair of bridge substructure
9.6 Site testing of CFRP repair and laboratory testing of materials
9.7 Dealing with defects in CFRP repairs
9.8 Conclusions
9.9 References

10. Sustainable replacement of aging bridge superstructures using fiber-reinforced polymer (FRP) composites

Abstract:
10.1 Introduction
10.2 Fiber-reinforced polymer (FRP) applications in bridge structures
10.3 Hybrid fiber-reinforced polymer (FRP)-concrete bridge superstructures
10.4 Conclusion
10.5 References



Index

最近チェックした商品