Introduction to Riemann Surfaces (Chelsea Publications)

個数:

Introduction to Riemann Surfaces (Chelsea Publications)

  • 提携先の海外書籍取次会社に在庫がございます。通常約2週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版
  • 言語 ENG
  • 商品コード 9780821831564
  • DDC分類 515.93

Full Description

This well-known book is a self-contained treatment of the classical theory of abstract Riemann surfaces. The first five chapters cover the requisite function theory and topology for Riemann surfaces. The second five chapters cover differentials and uniformization. For compact Riemann surfaces, there are clear treatments of divisors, Weierstrass points, the Riemann-Roch theorem and other important topics. Springer's book is an excellent text for an introductory course on Riemann surfaces. It includes exercises after each chapter and is illustrated with a beautiful set of figures.

Contents

Introduction:; 1-1 Algebraic functions and Riemann surfaces; 1-2 Plane fluid flows; 1-3 Fluid flows on surfaces; 1-4 Regular potentials; 1-5 Meromorphic functions; 1-6 Function theory on a torus General Topology:; 2-1 Topological spaces; 2-2 Functions and mappings; 2-3 Manifolds Riemann Surface of an Analytic Function:; 3-1 The complete analytic function; 3-2 The analytic configuration Covering Manifolds:; 4-1 Covering manifolds; 4-2 Monodromy theorem; 4-3 Fundamental group; 4-4 Covering transformations Combinatorial Topology:; 5-1 Triangulation; 5-2 Barycentric coordinates and subdivision; 5-3 Orientability; 5-4 Differentiable and analytic curves; 5-5 Normal forms of compact orientable surfaces; 5-6 Homology groups and Betti numbers; 5-7 Invariance of the homology groups; 5-8 Fundamental group and first homology group; 5-9 Homology on compact surfaces Differentials and Integrals:; 6-1 Second-order differentials and surface integrals; 6-2 First-order differentials and line integrals; 6-3 Stokes' theorem; 6-4 The exterior differential calculus; 6-5 Harmonic and analytic differentials The Hilbert Space of Differentials:; 7-1 Definition and properties of Hilbert space; 7-2 Smoothing operators; 7-3 Weyl's lemma and orthogonal projections Existence of Harmonic and Analytic Differentials:; 8-1 Existence theorems; 8-2 Countability of a Riemann surface Uniformization:; 9-1 Schlichtartig surfaces; 9-2 Universal covering surfaces; 9-3 Triangulation of a Riemann surface; 9-4 Mappings of a Riemann surface onto itself Compact Riemann Surfaces:; 10-1 Regular harmonic differentials; 10-2 The bilinear relations of Riemann; 10-3 Bilinear relations for differentials with singularities; 10-4 Divisors; 10-5 The Riemann-Roch theorem; 10-6 Weierstrass points; 10-7 Abel's theorem; 10-8 Jacobi inversion problem; 10-9 The field of algebraic functions; 10-10 The hyperelliptic case References Index.

最近チェックした商品