代数学と数論における幾何学的手法<br>Geometric Methods in Algebra and Number Theory (Progress in Mathematics Vol.235) (2004. 362 p. w. 6 figs.)

代数学と数論における幾何学的手法
Geometric Methods in Algebra and Number Theory (Progress in Mathematics Vol.235) (2004. 362 p. w. 6 figs.)

  • ただいまウェブストアではご注文を受け付けておりません。 ⇒古書を探す
  • 製本 Hardcover:ハードカバー版/ページ数 362 p.
  • 言語 ENG
  • 商品コード 9780817643492

基本説明

Key topics include: -Curves and their Jacobians -Algebraic surface Moduli spaces, Shimura varieties -Motives and motivic integration -and more.

Full Description

* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry

Contents

Beauville surfaces without real structures.- Couniformization of curves over number fields.- On the V-filtration of -modules.- Hecke orbits on Siegel modular varieties.- Ax-Kochen-Eršov Theorems for p-adic integrals and motivic integration.- Nested sets and Jeffrey-Kirwan residues.- Counting extensions of function fields with bounded discriminant and specified Galois group.- Classical and minimal models of the moduli space of curves of genus two.- Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve.- Mahler measure for dynamical systems on ?1 and intersection theory on a singular arithmetic surface.- A Combination of the Conjectures of Mordell-Lang and André-Oort.- Motivic approach to limit sheaves.- Counting points on cubic surfaces, II.- Quantum cohomology of isotropic Grassmannians.- Endomorphism algebras of superelliptic jacobians.

最近チェックした商品