Geometric Phases in Classical and Quantum Mechanics (Progress in Mathematical Physics) (2004. 200 p.)

個数:

Geometric Phases in Classical and Quantum Mechanics (Progress in Mathematical Physics) (2004. 200 p.)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 332 p.
  • 商品コード 9780817642822

Full Description

This work examines the beautiful and important physical concept known as the 'geometric phase,' bringing together different physical phenomena under a unified mathematical and physical scheme. Several well-established geometric and topological methods underscore the mathematical treatment of the subject, emphasizing a coherent perspective at a rather sophisticated level. What is unique in this text is that both the quantum and classical phases are studied from a geometric point of view, providing valuable insights into their relationship that have not been previously emphasized at the textbook level. Key Topics and Features: - Background material presents basic mathematical tools on manifolds and differential forms? Topological invariants (Chern classes and homotopy theory) are explained in simple and concrete language, with emphasis on physical applications? Berry's adiabatic phase and its generalizations are introduced - Systematic exposition treats different geometries (e. g. , symplectic and metric structures) living on a quantum phase space, in connection with both abelian and nonabelian phases?
Quantum mechanics is presented as classical Hamiltonian dynamics on a projective Hilbert space - Hannays classical adiabatic phase and angles are explained? Review of Berry and Robbins' revolutionary approach to spin-statistics - A chapter on examples and applications paves the way for ongoing studies of geometric phases - Problems at the end of each chapter - Extended bibliography and index Graduate students in mathematics with some prior knowledge of quantum mechanics will learn about a class of applications of differential geometry and geometric methods in quantum theory. Physicists and graduate students in physics will learn techniques of differential geometry in an applied context.

最近チェックした商品