Limit Theory for Mixing Dependent Random Variables (Mathematics and Its Applications (Kluwer ))

個数:

Limit Theory for Mixing Dependent Random Variables (Mathematics and Its Applications (Kluwer ))

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 426 p.
  • 言語 ENG
  • 商品コード 9780792342199
  • DDC分類 519.2

基本説明

Interest to researchers and graduate students in the field fo probability and statistics.

Full Description

For many practical problems, observations are not independent. In this book, limit behaviour of an important kind of dependent random variables, the so-called mixing random variables, is studied. Many profound results are given, which cover recent developments in this subject, such as basic properties of mixing variables, powerful probability and moment inequalities, weak convergence and strong convergence (approximation), limit behaviour of some statistics with a mixing sample, and many useful tools are provided.
Audience: This volume will be of interest to researchers and graduate students in the field of probability and statistics, whose work involves dependent data (variables).

Contents

Preface. Part I: Introduction. 1. Definitions and Basic Inequalities. 2. Moment Estimations of Partial Sums. Part II: Weak Convergence. 3. Weak Convergence for alpha-Mixing Sequences. 4. Weak Convergence for rho-Mixing Sequences. 5. Weak Convergence for phi-Mixing Sequences. 6. Weak Convergence for Mixing Random Fields. 7. The Berry-Esseen Inequality and the Rate of Weak Convergence. Part III: Almost Sure Convergence and Strong Approximations. 8. Laws of Large Numbers and Complete Convergence. 9. Strong Approximations. 10. The Increments of Partial Sums. 11. Strong Approximations for Mixing Random Fields. Part IV: Statistics of a Dependent Sample. 12. Empirical Processes. 13. Convergence of Some Statistics with a Mixing Sample. 14. Strong Approximations for Other Kinds of Dependent Random Variables. Appendix. References. Index.

最近チェックした商品