オイラーの宝石<br>Euler's Gem : The Polyhedron Formula and the Birth of Topology

個数:

オイラーの宝石
Euler's Gem : The Polyhedron Formula and the Birth of Topology

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 336 p./サイズ 185 line illus.
  • 言語 ENG
  • 商品コード 9780691154572
  • DDC分類 514.09

基本説明

New in paperback. Hardcover was published in 2008. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes.

Full Description

Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2. David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and how twentieth-century mathematicians discovered that every shape has its own Euler's formula.
Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, Euler's Gem will fascinate every mathematics enthusiast.

Contents

Preface ix Introduction 1 Chapter 1: Leonhard Euler and His Three "Great" Friends 10 Chapter 2: What Is a Polyhedron? 27 Chapter 3: The Five Perfect Bodies 31 Chapter 4: The Pythagorean Brotherhood and Plato's Atomic Theory 36 Chapter 5: Euclid and His Elements 44 Chapter 6: Kepler's Polyhedral Universe 51 Chapter 7: Euler's Gem 63 Chapter 8: Platonic Solids, Golf Balls, Fullerenes, and Geodesic Domes 75 Chapter 9: Scooped by Descartes? 81 Chapter 10: Legendre Gets It Right 87 Chapter 11: A Stroll through Konigsberg 100 Chapter 12: Cauchy's Flattened Polyhedra 112 Chapter 13: Planar Graphs, Geoboards, and Brussels Sprouts 119 Chapter 14: It's a Colorful World 130 Chapter 15: New Problems and New Proofs 145 Chapter 16: Rubber Sheets, Hollow Doughnuts, and Crazy Bottles 156 Chapter 17: Are They the Same, or Are They Different? 173 Chapter 18: A Knotty Problem 186 Chapter 19: Combing the Hair on a Coconut 202 Chapter 20: When Topology Controls Geometry 219 Chapter 21: The Topology of Curvy Surfaces 231 Chapter 22: Navigating in n Dimensions 241 Chapter 23: Henri Poincare and the Ascendance of Topology 253 Epilogue The Million-Dollar Question 265 Acknowledgements 271 Appendix A Build Your Own Polyhedra and Surfaces 273 Appendix B Recommended Readings 283 Notes 287 References 295 Illustration Credits 309 Index 311

最近チェックした商品