志村曲線上のモジュラ形式と特殊サイクル<br>Modular Forms and Special Cycles on Shimura Curves (Annals of Mathematics Studies)

個数:

志村曲線上のモジュラ形式と特殊サイクル
Modular Forms and Special Cycles on Shimura Curves (Annals of Mathematics Studies)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 392 p.
  • 言語 ENG
  • 商品コード 9780691125510
  • DDC分類 512.7

基本説明

A thorough study of the generating functions constructed from special cycles, on the arithmetic surface μ attached to a Shimura curve Μ over the field of rational numbers.

Full Description

Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations.
The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Contents

Acknowledgments ix Chapter 1. Introduction 1 Bibliography 21 Chapter 2. Arithmetic intersection theory on stacks 27 Chapter 3. Cycles on Shimura curves 45 Chapter 4. An arithmetic theta function 71 Chapter 5. The central derivative of a genus two Eisenstein series 105 Chapter 6. The generating function for 0-cycles 167 Chapter 6 Appendix. The case p = 2, p | D (B) 181 Chapter 7. An inner product formula 205 Chapter 8. On the doubling integral 265 Chapter 9. Central derivatives of L-functions 351 Index 371

最近チェックした商品