Totally Nonnegative Matrices (Princeton Series in Applied Mathematics)

個数:

Totally Nonnegative Matrices (Princeton Series in Applied Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 264 p.
  • 言語 ENG
  • 商品コード 9780691121574
  • DDC分類 512.9434

基本説明

A comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants.

Full Description

Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices.
The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.

Contents

List of Figures xi Preface xiii Chapter 0. Introduction 1 0.0 Definitions and Notation 1 0.1 Jacobi Matrices and Other Examples of TN matrices 3 0.2 Applications and Motivation 15 0.3 Organization and Particularities 24 Chapter 1. Preliminary Results and Discussion 27 1.0 Introduction 27 1.1 The Cauchy-Binet Determinantal Formula 27 1.2 Other Important Determinantal Identities 28 1.3 Some Basic Facts 33 1.4 TN and TP Preserving Linear Transformations 34 1.5 Schur Complements 35 1.6 Zero-Nonzero Patterns of TN Matrices 37 Chapter 2. Bidiagonal Factorization 43 2.0 Introduction 43 2.1 Notation and Terms 45 2.2 Standard Elementary Bidiagonal Factorization: Invertible Case 47 2.3 Standard Elementary Bidiagonal Factorization: General Case 53 2.4 LU Factorization: A consequence 59 2.5 Applications 62 2.6 Planar Diagrams and EB factorization 64 Chapter 3. Recognition 73 3.0 Introduction 73 3.1 Sets of Positive Minors Sufficient for Total Positivity 74 3.2 Application: TP Intervals 80 3.3 Efficient Algorithm for testing for TN 82 Chapter 4. Sign Variation of Vectors and TN Linear Transformations 87 4.0 Introduction 87 4.1 Notation and Terms 87 4.2 Variation Diminution Results and EB Factorization 88 4.3 Strong Variation Diminution for TP Matrices 91 4.4 Converses to Variation Diminution 94 Chapter 5. The Spectral Structure of TN Matrices 97 5.0 Introduction 97 5.1 Notation and Terms 98 5.2 The Spectra of IITN Matrices 99 5.3 Eigenvector Properties 100 5.4 The Irreducible Case 106 5.5 Other Spectral Results 118 Chapter 6. Determinantal Inequalities for TN Matrices 129 6.0 Introduction 129 6.1 Definitions and Notation 131 6.2 Sylvester Implies Koteljanski?I 132 6.3 Multiplicative Principal Minor Inequalities 134 6.4 Some Non-principal Minor Inequalities 146 Chapter 7. Row and Column Inclusion and the Distribution of Rank 153 7.0 Introduction 153 7.1 Row and Column Inclusion Results for TN Matrices 153 7.2 Shadows and the Extension of Rank Deficiency in Submatrices of TN Matrices 159 7.3 The Contiguous Rank Property 165 Chapter 8. Hadamard Products and Powers of TN Matrices 167 8.0 Definitions 167 8.1 Conditions under which the Hadamard Product is TP/TN 168 8.2 The Hadamard Core 169 8.3 Oppenheim's Inequality 177 8.4 Hadamard Powers of TP2 179 Chapter 9. Extensions and Completions 185 9.0 Line Insertion 185 9.1 Completions and Partial TN Matrices 186 9.2 Chordal Case--MLBC Graphs 189 9.3 TN Completions: Adjacent Edge Conditions 191 9.4 TN Completions: Single Entry Case 195 9.5 TN Perturbations: The Case of Retractions 198 Chapter 10. Other Related Topics on TN Matrices 205 10.0 Introduction and Topics 205 10.1 Powers and Roots of TP/TN Matrices 205 10.2 Subdirect Sums of TN Matrices 207 10.3 TP/TN Polynomial Matrices 212 10.4 Perron Complements of TN Matrices 213 Bibliography 219 List of Symbols 239 Index 245

最近チェックした商品