確率、確率過程、統計解析:学際的応用<br>Probability, Random Processes, and Statistical Analysis : Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance

個数:

確率、確率過程、統計解析:学際的応用
Probability, Random Processes, and Statistical Analysis : Applications to Communications, Signal Processing, Queueing Theory and Mathematical Finance

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 812 p./サイズ 114 b/w illus., 458 exercises
  • 言語 ENG
  • 商品コード 9780521895446
  • DDC分類 519.22

基本説明

Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and ltô process.

Full Description

Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum-Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.

Contents

1. Introduction; Part I. Probability, Random Variables and Statistics: 2. Probability; 3. Discrete random variables; 4. Continuous random variables; 5. Functions of random variables and their distributions; 6. Fundamentals of statistical analysis; 7. Distributions derived from the normal distribution; Part II. Transform Methods, Bounds and Limits: 8. Moment generating function and characteristic function; 9. Generating function and Laplace transform; 10. Inequalities, bounds and large deviation approximation; 11. Convergence of a sequence of random variables, and the limit theorems; Part III. Random Processes: 12. Random process; 13. Spectral representation of random processes and time series; 14. Poisson process, birth-death process, and renewal process; 15. Discrete-time Markov chains; 16. Semi-Markov processes and continuous-time Markov chains; 17. Random walk, Brownian motion, diffusion and itô processes; Part IV. Statistical Inference: 18. Estimation and decision theory; 19. Estimation algorithms; Part V. Applications and Advanced Topics: 20. Hidden Markov models and applications; 21. Probabilistic models in machine learning; 22. Filtering and prediction of random processes; 23. Queuing and loss models.

最近チェックした商品