ヒルベルト変換<br>Hilbert Transforms: Volume 1 (Encyclopedia of Mathematics and its Applications)

個数:

ヒルベルト変換
Hilbert Transforms: Volume 1 (Encyclopedia of Mathematics and its Applications)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 896 p.
  • 言語 ENG
  • 商品コード 9780521887625
  • DDC分類 515.733

基本説明

The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function.

Full Description

The Hilbert transform has many uses, including solving problems in aerodynamics, condensed matter physics, optics, fluids, and engineering. Written in a style that will suit a wide audience (including the physical sciences), this book will become the reference of choice on the topic, whatever the subject background of the reader. It explains all the common Hilbert transforms, mathematical techniques for evaluating them, and has detailed discussions of their application. Especially useful for researchers are the tabulation of analytically evaluated Hilbert transforms, and an atlas that immediately illustrates how the Hilbert transform alters a function. A collection of exercises helps the reader to test their understanding of the material in each chapter. The bibliography is a wide-ranging collection of references both to the classical mathematical papers, and to a diverse array of applications.

Contents

Preface; List of symbols; List of abbreviations; Volume I: 1. Introduction; 2. Review of some background mathematics; 3. Derivation of the Hilbert transform relations; 4. Some basic properties of the Hilbert transform; 5. Relationship between the Hilbert transform and some common transforms; 6. The Hilbert transform of periodic functions; 7. Inequalities for the Hilbert transform; 8. Asymptotic behavior of the Hilbert transform; 9. Hilbert transforms of some special functions; 10. Hilbert transforms involving distributions; 11. The finite Hilbert transform; 12. Some singular integral equations; 13. Discrete Hilbert transforms; 14. Numerical evaluation of Hilbert transforms; References; Subject index; Author index.

最近チェックした商品