Geometric Spanner Networks

個数:

Geometric Spanner Networks

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 516 p.
  • 言語 ENG
  • 商品コード 9780521815130
  • DDC分類 005.1

Full Description

Aimed at an audience of researchers and graduate students in computational geometry and algorithm design, this book uses the Geometric Spanner Network Problem to showcase a number of useful algorithmic techniques, data structure strategies, and geometric analysis techniques with many applications, practical and theoretical. The authors present rigorous descriptions of the main algorithms and their analyses for different variations of the Geometric Spanner Network Problem. Though the basic ideas behind most of these algorithms are intuitive, very few are easy to describe and analyze. For most of the algorithms, nontrivial data structures need to be designed, and nontrivial techniques need to be developed in order for analysis to take place. Still, there are several basic principles and results that are used throughout the book. One of the most important is the powerful well-separated pair decomposition. This decomposition is used as a starting point for several of the spanner constructions.

Contents

Part I. Introduction: 1. Introduction; 2. Algorithms and graphs; 3. The algebraic computation-tree model; Part II. Spanners Based on Simplical Cones: 4. Spanners based on the Q-graph; 5. Cones in higher dimensional space and Q-graphs; 6. Geometric analysis: the gap property; 7. The gap-greedy algorithm; 8. Enumerating distances using spanners of bounded degree; Part III. The Well Separated Pair Decomposition and its Applications: 9. The well-separated pair decomposition; 10. Applications of well-separated pairs; 11. The Dumbbell theorem; 12. Shortcutting trees and spanners with low spanner diameter; 13. Approximating the stretch factor of Euclidean graphs; Part IV. The Path Greedy Algorithm: 14. Geometric analysis: the leapfrog property; 15. The path-greedy algorithm; Part V. Further Results and Applications: 16. The distance range hierarchy; 17. Approximating shortest paths in spanners; 18. Fault-tolerant spanners; 19. Designing approximation algorithms with spanners; 20. Further results and open problems.

最近チェックした商品