数理生態学の基礎<br>Elements of Mathematical Ecology

個数:

数理生態学の基礎
Elements of Mathematical Ecology

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 464 p.
  • 言語 ENG
  • 商品コード 9780521802130
  • DDC分類 577.015118

基本説明

Deals with simple, unstructured population models that ignore much of the variability found in nature; more complex structured poulation models.

Full Description

Elements of Mathematical Ecology provides an introduction to classical and modern mathematical models, methods, and issues in population ecology. The first part of the book is devoted to simple, unstructured population models that ignore much of the variability found in natural populations for the sake of tractability. Topics covered include density dependence, bifurcations, demographic stochasticity, time delays, population interactions (predation, competition, and mutualism), and the application of optimal control theory to the management of renewable resources. The second part of this book is devoted to structured population models, covering spatially-structured population models (with a focus on reaction-diffusion models), age-structured models, and two-sex models. Suitable for upper level students and beginning researchers in ecology, mathematical biology and applied mathematics, the volume includes numerous clear line diagrams that clarify the mathematics, relevant problems thoughout the text that aid understanding, and supplementary mathematical and historical material that enrich the main text.

Contents

Preface; Part I. Unstructured Population Models; Section A. Single Species Models: 1. Exponential, logistic and Gompertz growth; 2. Harvest models - bifurcations and breakpoints; 3. Stochastic birth and death processes; 4. Discrete-time models; 5. Delay models; 6. Branching processes; Section B. Interacting Populations: 7. A classical predator-prey model; 8. To cycle or not to cycle; 9. Global bifurcations in predator-prey models; 10. Chemosts models; 11. Discrete-time predator-prey models; 12. Competition models; 13. Mutualism models; Section C. Dynamics of Exploited Populations: 14. Harvest models and optimal control theory; Part II. Structured Population Models; Section D. Spatially-Structured Models: 15. Spatially-structured models; 16. Spatial steady states: linear problems; 17. Spatial steady states: nonlinear problems; 18. Models of spread; Section E. Age-Structured Models: 19. An overview of linear age-structured models; 20. The Lokta integral equation; 21. The difference equation; 22. The Leslie matrix; 23. The McKendrick-von Foerster PDE; 24. Some simple nonlinear models; Section F. Gender-Structured Models: 25. Two-sex models; References; Index.

最近チェックした商品