An Introduction to Parallel and Vector Scientific Computation (Cambridge Texts in Applied Mathematics)

個数:
  • ポイントキャンペーン

An Introduction to Parallel and Vector Scientific Computation (Cambridge Texts in Applied Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 300 p./サイズ 120 exercises
  • 言語 ENG
  • 商品コード 9780521683371
  • DDC分類 004.35

基本説明

Students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism.

Full Description

In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.

Contents

Part I. Machines and Computation: 1. Introduction - the nature of high performance computation; 2. Theoretical considerations - complexity; 3. Machine implementations; Part II. Linear Systems: 4. Building blocks - floating point numbers and basic linear algebra; 5. Direct methods for linear systems and LU decomposition; 6. Direct methods for systems with special structure; 7. Error analysis and QR decomposition; 8. Iterative methods for linear systems; 9. Finding eigenvalues and eigenvectors; Part III. Monte Carlo Methods: 10. Monte Carlo simulation; 11. Monte Carlo optimization; Appendix: programming examples.

最近チェックした商品