Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications (London Mathematical Society Lecture Note Series)

個数:

Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications (London Mathematical Society Lecture Note Series)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 356 p.
  • 言語 ENG
  • 商品コード 9780521175616
  • DDC分類 523.1015195

Full Description

Random Fields on the Sphere presents a comprehensive analysis of isotropic spherical random fields. The main emphasis is on tools from harmonic analysis, beginning with the representation theory for the group of rotations SO(3). Many recent developments on the method of moments and cumulants for the analysis of Gaussian subordinated fields are reviewed. This background material is used to analyse spectral representations of isotropic spherical random fields and then to investigate in depth the properties of associated harmonic coefficients. Properties and statistical estimation of angular power spectra and polyspectra are addressed in full. The authors are strongly motivated by cosmological applications, especially the analysis of cosmic microwave background (CMB) radiation data, which has initiated a challenging new field of mathematical and statistical research. Ideal for mathematicians and statisticians interested in applications to cosmology, it will also interest cosmologists and mathematicians working in group representations, stochastic calculus and spherical wavelets.

Contents

Preface; 1. Introduction; 2. Background results in representation theory; 3. Representations of SO(3) and harmonic analysis on S2; 4. Background results in probability and graphical methods; 5. Spectral representations; 6. Characterizations of isotropy; 7. Limit theorems for Gaussian subordinated random fields; 8. Asymptotics for the sample power spectrum; 9. Asymptotics for sample bispectra; 10. Spherical needlets and their asymptotic properties; 11. Needlets estimation of power spectrum and bispectrum; 12. Spin random fields; Appendix; Bibliography; Index.

最近チェックした商品