Random Walks on Infinite Graphs and Groups (Cambridge Tracts in Mathematics)

個数:

Random Walks on Infinite Graphs and Groups (Cambridge Tracts in Mathematics)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Paperback:紙装版/ペーパーバック版/ページ数 352 p./サイズ 12 line figures
  • 言語 ENG
  • 商品コード 9780521061728
  • DDC分類 519.282

基本説明

New in paperback. Hardcover was published in 2000. The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory.

Full Description

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Contents

Part I. The Type Problem: 1. Basic facts; 2. Recurrence and transience of infinite networks; 3. Applications to random walks; 4. Isoperimetric inequalities; 5. Transient subtrees, and the classification of the recurrent quasi transitive graphs; 6. More on recurrence; Part II. The Spectral Radius: 7. Superharmonic functions and r-recurrence; 8. The spectral radius; 9. Computing the Green function; 10. Spectral radius and strong isoperimetric inequality; 11. A lower bound for simple random walk; 12. Spectral radius and amenability; Part III. The Asymptotic Behaviour of Transition Probabilities: 13. The local central limit theorem on the grid; 14. Growth, isoperimetric inequalities, and the asymptotic type of random walk; 15. The asymptotic type of random walk on amenable groups; 16. Simple random walk on the Sierpinski graphs; 17. Local limit theorems on free products; 18. Intermezzo; 19. Free groups and homogenous trees; Part IV. An Introduction to Topological Boundary Theory: 20. Probabilistic approach to the Dirichlet problem, and a class of compactifications; 21. Ends of graphs and the Dirichlet problem; 22. Hyperbolic groups and graphs; 23. The Dirichlet problem for circle packing graphs; 24. The construction of the Martin boundary; 25. Generalized lattices, Abelian and nilpotent groups, and graphs with polynomial growth; 27. The Martin boundary of hyperbolic graphs; 28. Cartesian products.

最近チェックした商品