統計学の線形モデル(第2版)<br>Linear Models in Statistics (Wiley Series in Probability and Statistics) (2ND)

個数:
  • ポイントキャンペーン

統計学の線形モデル(第2版)
Linear Models in Statistics (Wiley Series in Probability and Statistics) (2ND)

  • ウェブストア価格 ¥40,551(本体¥36,865)
  • Wiley-Interscience(2008/01発売)
  • 外貨定価 US$ 194.95
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,840pt
  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 672 p.
  • 言語 ENG
  • 商品コード 9780471754985
  • DDC分類 519.535

基本説明

Discusses classical linear models from a matrix algebra perspective, making the subject easily accessible to readers encountering linear models for the first time.

Full Description

The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed.

Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models.

This modern Second Edition features:



New chapters on Bayesian linear models as well as random and mixed linear models


Expanded discussion of two-way models with empty cells


Additional sections on the geometry of least squares


Updated coverage of simultaneous inference



The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples.

Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Contents

Preface. 1. Introduction.

2. Matrix Algebra.

3. Random Vectors and Matrices.

4. Multivariate Normal Distribution.

5. Distribution of Quadratic Forms in y.

6. Simple Linear Regression.

7. Multiple Regression: Estimation.

8. Multiple Regression: tests of Hypotheses and Confidence Intervals.

9. Multiple Regression: Model Validation and Diagnostics.

10. Multiple Regression: random x's.

11. Multiple Regression: Bayesian Inference.

12. Analysis-of-Variance Models.

13. One-Way Analysis-of-Variance: balanced Case.

14. Two-Way Analysis-of Variance: Balanced Case.

15. Analysis-of-Variance: The Cell Means Model for Unbalanced Data.

16. Analysis-of-Covariance.

17. Linear Mixed Models.

18. Additional Models.

Appendix A. Answers and Hits to the Problems.

References.

Index.

最近チェックした商品