論理決定回路の設計<br>Logically Determined Design : Clockless System Design with Null Convention Logic

個数:

論理決定回路の設計
Logically Determined Design : Clockless System Design with Null Convention Logic

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 292 p.
  • 言語 ENG
  • 商品コード 9780471684787
  • DDC分類 621.381

Full Description

This seminal book presents a new logically determined design methodology for designing clockless circuit systems. The book presents the foundations, architectures and methodologies to implement such systems. Based on logical relationships, it concentrates on digital circuit system complexity and productivity to allow for more reliable, faster and cheaper products.
* Transcends shortcomings of Boolean logic.
* Presents theoritical foundations, architecture and analysis of clockless (asynchronous) circuit design.
* Contains examples and exercises making it ideal for those studying the area.

Contents

Preface.

Acknowledgments.

1. Trusting Logic.

1.1 Mathematicianless Enlivenment of Logic Expression.

1.2 Emulating the Mathematician.

1.3 Supplementing the Expressivity of Boolean Logic.

1.4 Defining a Sufficiently Expressive Logic.

1.5 The Logically Determined System.

1.6 Trusting the Logic: A Methodology of Logical Confidence.

1.7 Summary.

1.8 Exercises.

2. A Sufficiently Expressive Logic.

2.1 Searching for a New Logic.

2.2 Deriving a 3 Value Logic.

2.3 Deriving a 2 Value Logic.

2.4 Compromising Logical Completeness.

2.5 Summary.

3. The Structure of Logically Determined Systems.

3.1 The Cycle.

3.2 Basic Pipeline Structures.

3.3 Control Variables and Wavefront Steering.

3.4 The Logically Determined System.

3.5 Initialization.

3.6 Testing.

3.7 Summary.

3.8 Exercises.

4. 2NCL Combinational Expression.

4.1 Function Classification.

4.2 The Library of 2NCL Operators.

4.3 2NCL Combinational Expression.

4.4 Example 1: Binary Plus Trinary to Quaternary Adder.

4.5 Example 2: Logic Unit.

4.6 Example 3: Minterm Construction.

4.7 Example 4: A Binary Clipper.

4.8 Example 5: A Code Detector.

4.9 Completeness Sufficiency.

4.10 Greater Combinational Composition.

4.11 Directly Mapping Boolean Combinational Expressions.

4.12 Summary.

4.13 Exercises.

5. Cycle Granularity.

5.1 Partitioning Combinational Expressions.

5.2 Partitioning the Data Path.

5.3 Two-dimensional Pipelining: Orthogonal Pipelining Across a Data Path.

5.4 2D Wavefront Behavior.

5.5 2D Pipelined Operations.

5.6 Summary.

5.7 Exercises.

6. Memory Elements.

6.1 The Ring Register.

6.2 Complex Function Registers.

6.3 The Consume/Produce Register Structure.

6.4 The Register File.

6.5 Delay Pipeline Memory.

6.6 Delay Tower.

6.7 FIFO Tower.

6.8 Stack Tower.

6.9 Wrapper for Standard Memory Modules.

6.10 Exercises.

7. State Machines.

7.1 Basic State Machine Structure.

7.2 Exercises.

8. Busses and Networks.

8.1 The Bus.

8.2 A Fan-out Steering Tree.

8.3 Fan-in Steering Trees Do Not Work.

8.4 Arbitrated Steering Structures.

8.5 Concurrent Crossbar Network.

8.6 Exercises.

9. Multi-value Numeric Design.

9.1 Numeric Representation.

9.2 A Quaternary ALU.

9.3 A Binary ALU.

9.4 Comparison.

9.5 Summary.

9.6 Exercises.

10. The Shadow Model of Pipeline Behavior.

10.1 Pipeline Structure.

10.2 The Pipeline Simulation Model.

10.3 Delays Affecting Throughput.

10.4 The Shadow Model.

10.5 The Value of the Shadow Model.

10.6 Exercises.

11. Pipeline Buffering.

11.1 Enhancing Throughput.

11.2 Buffering for Constant Rate Throughput.

11.3 Summary of Buffering.

11.4 Exercises.

12. Ring Behavior.

12.1 The Pipeline Ring.

12.2 Wavefront-limited Ring Behavior.

12.3 The Cycle-to-Wavefront Ratio.

12.4 Ring Signal Behavior.

13. Interacting Pipeline Structures.

13.1 Preliminaries.

13.2 Example 1: The Basics of a Two-pipeline Structure.

13.3 Example 2: A Wavefront Delay Structure.

13.4 Example 3: Reducing the Period of the Slowest Cycle.

13.5 Exercises.

14. Complex Pipeline Structures.

14.1 Linear Feedback Shift Register Example.

14.2 Grafting Pipelines.

14.3 The LFSR with a Slow Cycle.

14.4 Summary.

14.5 Exercises.

Appendix A: Logically Determined Wavefront Flow.

A.1 Synchronization.

A.2 Wavefronts and Bubbles.

A.3 Wavefront Propagation.

A.4 Extended Simulation of Wavefront Flow.

A.5 Wavefront and Bubble Behavior in a System.

Appendix B: Playing with 2NCL.

B.1 The SR Flip-flop Implementations.

B.2 Initialization.

B.3 Auto-produce and Auto-consume.

Appendix C: Pipeline Simulation.

References.

Index.

最近チェックした商品