金融におけるフーリエ変換法<br>Fourier Transform Methods in Finance (Wiley Finance)

個数:
電子版価格
¥22,899
  • 電子版あり

金融におけるフーリエ変換法
Fourier Transform Methods in Finance (Wiley Finance)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 242 p.
  • 言語 ENG
  • 商品コード 9780470994009
  • DDC分類 332.632042

Full Description


In recent years, Fourier transform methods have emerged as one of the major methodologies for the evaluation of derivative contracts, largely due to the need to strike a balance between the extension of existing pricing models beyond the traditional Black - Scholes setting and a need to evaluate prices consistently with the market quotes. Fourier Transform Methods in Finance is a practical and accessible guide to pricing financial instruments using Fourier transform. Written by an experienced team of practitioners and academics, it covers Fourier pricing methods; the dynamics of asset prices; non stationary market dynamics; arbitrage free pricing; generalized functions and the Fourier transform method.Readers will learn how to: compute the Hilbert transform of the pricing kernel under a Fast Fourier Transform (FFT) technique characterise the price dynamics on a market in terms of the characteristic function, allowing for both diffusive processes and jumps apply the concept of characteristic function to non-stationary processes, in particular in the presence of stochastic volatility and more generally time change techniques perform a change of measure on the characteristic function in order to make the price process a martingale recover a general representation of the pricing kernel of the economy in terms of Hilbert transform using the theory of generalised functions apply the pricing formula to the most famous pricing models, with stochastic volatility and jumps. Junior and senior practitioners alike will benefit from this quick reference guide to state of the art models and market calibration techniques.Not only will it enable them to write an algorithm for option pricing using the most advanced models, calibrate a pricing model on options data, and extract the implied probability distribution in market data, they will also understand the most advanced models and techniques and discover how these techniques have been adjusted for applications in finance. ISBN 978-0-470-99400-9

Contents

Preface. List of Symbols. 1 Fourier Pricing Methods. 1.1 Introduction. 1.2 A general representation of option prices. 1.3 The dynamics of asset prices. 1.4 A generalized function approach to Fourier pricing. 1.5 Hilbert transform. 1.6 Pricing via FFT. 1.7 Related literature. 2 The Dynamics of Asset Prices. 2.1 Introduction. 2.2 Efficient markets and Levy processes. 2.3 Construction of Levy markets. 2.4 Properties of Levy processes. 3 Non-stationary Market Dynamics. 3.1 Non-stationary processes. 3.2 Time changes. 3.3 Simulation of Levy processes. 4 Arbitrage-Free Pricing. 4.1 Introduction. 4.2 Equilibrium and arbitrage. 4.3 Arbitrage-free pricing. 4.4 Derivatives. 4.5 Levy martingale processes. 4.6 Levy markets. 5 Generalized Functions. 5.1 Introduction. 5.2 The vector space of test functions. 5.3 Distributions. 5.4 The calculus of distributions. 5.5 Slow growth distributions. 5.6 Function convolution. 5.7 Distributional convolution. 5.8 The convolution of distributions in S. 6 The Fourier Transform. 6.1 Introduction. 6.2 The Fourier transformation of functions. 6.3 Fourier transform and option pricing. 6.4 Fourier transform for generalized functions. 6.5 Exercises. 6.6 Fourier option pricing with generalized functions. 7 Fourier Transforms at Work. 7.1 Introduction. 7.2 The Black-Scholes model. 7.3 Finite activity models. 7.4 Infinite activity models. 7.5 Stochastic volatility. 7.6 FFT at work. Appendices. A Elements of probability. A.1 Elements of measure theory. A.2 Elements of the theory of stochastic processes. B Elements of Complex Analysis. B.1 Complex numbers. B.2 Functions of complex variables. C Complex Integration. C.1 Definitions. C.2 The Cauchy-Goursat theorem. C.3 Consequences of Cauchy's theorem. C.4 Principal value. C.5 Laurent series. C.6 Complex residue. C.7 Residue theorem. C.8 Jordan's Lemma. D Vector Spaces and Function Spaces. D.1 Definitions. D.2 Inner product space. D.3 Topological vector spaces. D.4 Functionals and dual space. E The Fast Fourier Transform. E.1 Discrete Fourier transform. E.2 Fast Fourier transform. F The Fractional Fourier Transform. F.1 Circular matrix. F.2 Toepliz matrix. F.3 Some numerical results. G Affine Models: The Path Integral Approach. G.1 The problem. G.2 Solution of the Riccati equations. Bibliogrsphy. Index.

最近チェックした商品