Model-Based Visual Tracking : The OpenTL Framework

個数:

Model-Based Visual Tracking : The OpenTL Framework

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 302 p.
  • 言語 ENG
  • 商品コード 9780470876138
  • DDC分類 006.37

Full Description


This book has two main goalsof this growing field, as well as to propose a corresponding software framework, the OpenTL library, developed by the author and his working group at TUM-Informatik. The main objective of this work is to show, how most real-world application scenarios can be naturally cast into a common description vocabulary, and therefore implemented and tested in a fully modular and scalable way, through the defnition of a layered, object-oriented software architecture.The resulting architecture covers in a seamless way all processing levels, from raw data acquisition up to model-based object detection and sequential localization, and defines, at the application level, what we call the tracking pipeline. Within this framework, extensive use of graphics hardware (GPU computing) as well as distributed processing, allows real-time performances for complex models and sensory systems.

Contents

Preface. 1 Introduction . 1.1 Overview of the Problem. 1.2 General Tracking System Prototype. 1.3 The Tracking Pipeline. 2 Model Representation. 2.1 Camera Model. 2.2 Object Model. 2.3 Mapping Between Object and Sensor Spaces. 2.4 Object Dynamics. 3 The Visual Modality Abstraction. 3.1 Preprocessing. 3.2 Sampling and Updating Reference Features. 3.3 Model Matching with the Image Data. 3.4 Data Fusion Across Multiple Modalities and Cameras. 4 Examples of Visual Modalities. 4.1 Color Statistics. 4.2 Background Subtraction. 4.3 Blobs. 4.4 Model Contours. 4.5 Keypoints. 4.6 Motion. 4.7 Templates. 5 Recursive State-Space Estimation. 5.1 Target-State Distribution. 5.2 MLE and MAP Estimation. 5.3 Gaussian Filters. 5.4 Monte Carlo Filters. 5.5 Grid Filters. 6 Examples of Target Detectors. 6.1 Blob Clustering. 6.2 AdaBoost Classifiers. 6.3 Geometric Hashing. 6.4 Monte Carlo sampling. 6.5 Invariant Keypoints. 7 Building Applications with OpenTL. 7.1 Functional Architecture of OpenTL. 7.2 Building a Tutorial Application with OpenTL. 7.3 Other Application Examples. Appendix A: Pose Estimation. A.1 Point Correspondences. A.2 Line Correspondences. A.3 Point and Line Correspondences. A.4 Computation of the Projective DLT Matrices. Appendix B: Pose Representations . B.1 Poses Without Rotation. B.2 Parametrizing Rotations. B.3 Poses with Rotation and Uniform Scale. B.4 Affinity. B.5 Poses with Rotation and Nonuniform Scale. B.6 General Homography: The DLT Algorithm. Nomenclature. Bibliography. Index.

最近チェックした商品