応用気体力学<br>Applied Gas Dynamics

個数:

応用気体力学
Applied Gas Dynamics

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 643 p.
  • 言語 ENG
  • 商品コード 9780470825761
  • DDC分類 620.1074

基本説明

Written by one of the top experts in gas dynamics, this book covers both application aspects along with theory. Highlights the involved aspects of flow processes.

Full Description

In Applied Gas Dynamics, Professor Ethirajan Rathakrishnan introduces the high-tech science of gas dynamics, from a definition of the subject to the three essential processes of this science, namely, the isentropic process, shock and expansion process, and Fanno and Rayleigh flows. The material is presented in such a manner that beginners can follow the subject comfortably. Rathakrishnan also covers the theoretical and application aspects of high-speed flows in which enthalpy change becomes significant.



Covers both theory and applications
Explains involved aspects of flow processes in detail
Provides a large number of worked through examples in all chapters
Reinforces learning with concise summaries at the end of every chapter
Contains a liberal number of exercise problems with answers
Discusses ram jet and jet theory -- unique topics of use to all working in the field
Classroom tested at introductory and advanced levels
Solutions manual and lecture slides available for instructors

Applied Gas Dynamics is aimed at graduate students and advanced undergraduates in Aerospace Engineering and Mechanical Engineering who are taking courses such as Gas Dynamics, Compressible Flows, High-Speed Aerodynamics, Applied Gas Dynamics, Experimental Aerodynamics and High-Enthalpy Flows. Practicing engineers and researchers working with high speed flows will also find this book helpful.

Lecture materials for instructors available at http://www.wiley.com/go/gasdyn

Contents

Preface. About the Author.

1 Basic Facts.

1.1 Definition of Gas Dynamics.

1.2 Introduction.

1.3 Compressibility.

1.4 Supersonic Flow - What is it?

1.5 Speed of Sound.

1.6 Temperature Rise.

1.7 Mach Angle.

1.8 Thermodynamics of Fluid Flow.

1.9 First Law of Thermodynamics (Energy Equation).

1.10 The Second Law of Thermodynamics (Entropy Equation).

1.11 Thermal and Calorical Properties.

1.12 The Perfect Gas.

1.13 Wave Propagation.

1.14 Velocity of Sound.

1.15 Subsonic and Supersonic Flows.

1.16 Similarity Parameters.

1.17 Continuum Hypothesis.

1.18 Compressible Flow Regimes.

1.19 Summary.

Exercise Problems.

2 Steady One-Dimensional Flow.

2.1 Introduction.

2.2 Fundamental Equations.

2.3 Discharge from a Reservoir.

2.4 Streamtube Area-Velocity Relation.

2.5 de Laval Nozzle.

2.6 Supersonic Flow Generation.

2.7 Performance of Actual Nozzles.

2.8 Diffusers.

2.9 Dynamic Head Measurement in Compressible Flow.

2.10 Pressure Coefficient.

2.11 Summary.

Exercise Problems.

3 Normal Shock Waves.

3.1 Introduction.

3.2 Equations of Motion for a Normal Shock Wave.

3.3 The Normal Shock Relations for a Perfect Gas.

3.4 Change of Stagnation or Total Pressure Across a Shock.

3.5 Hugoniot Equation.

3.6 The Propagating Shock Wave.

3.7 Reflected Shock Wave.

3.8 Centered Expansion Wave.

3.9 Shock Tube.

3.10 Summary.

Exercise Problems.

4 Oblique Shock and ExpansionWaves.

4.1 Introduction.

4.2 Oblique Shock Relations.

4.3 Relation between β and θ.

4.4 Shock Polar.

4.5 Supersonic Flow Over a Wedge.

4.6 Weak Oblique Shocks.

4.7 Supersonic Compression.

4.8 Supersonic Expansion by Turning.

4.9 The Prandtl-Meyer Expansion.

4.10 Simple and Nonsimple Regions.

4.11 Reflection and Intersection of Shocks and Expansion Waves.

4.12 Detached Shocks.

4.13 Mach Reflection.

4.14 Shock-Expansion Theory.

4.15 Thin Aerofoil Theory.

4.15.1 Application of Thin Aerofoil Theory.

4.16 Summary.

Exercise Problems.

5 Compressible Flow Equations.

5.1 Introduction.

5.2 Crocco's Theorem.

5.3 General Potential Equation for Three-Dimensional Flow.

5.4 Linearization of the Potential Equation.

5.5 Potential Equation for Bodies of Revolution.

5.6 Boundary Conditions.

5.7 Pressure Coefficient.

5.8 Summary.

Exercise Problems.

6 Similarity Rule.

6.1 Introduction.

6.2 Two-Dimensional Flow: The Prandtl-Glauert Rule for Subsonic Flow.

6.3 Prandtl-Glauert Rule for Supersonic Flow: Versions I and II.

6.4 The von Karman Rule for Transonic Flow.

6.5 Hypersonic Similarity.

6.6 Three-Dimensional Flow: Gothert's Rule.

6.7 Summary.

Exercise Problems.

7 Two-Dimensional Compressible Flows.

7.1 Introduction.

7.2 General Linear Solution for Supersonic Flow.

7.3 Flow Over a Wave-Shaped Wall.

7.4 Summary.

Exercise Problems.

8 Flow with Friction and Heat Transfer.

8.1 Introduction.

8.2 Flow in Constant Area Duct with Friction.

8.4 Flow with Heating or Cooling in Ducts.

8.5 Summary.

Exercise Problems.

9 Method of Characteristics.

9.1 Introduction.

9.2 The Concepts of Characteristic.

9.3 The Compatibility Relation.

9.4 The Numerical Computational Method.

9.5 Theorems for Two-Dimensional Flow.

9.6 Numerical Computation with Weak Finite Waves.

9.7 Design of Supersonic Nozzle.

9.8 Summary.

10 Measurements in Compressible Flow.

10.1 Introduction.

10.2 Pressure Measurements.

10.3 Temperature Measurements.

10.4 Velocity and Direction.

10.5 Density Problems.

10.6 Compressible Flow Visualization.

10.7 Interferometer.

10.8 Schlieren System.

10.9 Shadowgraph.

10.10 Wind Tunnels.

10.11 Hypersonic Tunnels.

10.12 Instrumentation and Calibration of Wind Tunnels.

10.13 Calibration and Use of Hypersonic Tunnels.

10.14 Flow Visualization.

10.15 Summary.

Exercise Problems.

11 Ramjet.

11.1 Introduction.

11.2 The Ideal Ramjet.

11.3 Aerodynamic Losses.

11.4 Aerothermodynamics of Engine Components.

11.5 Flow Through Inlets.

11.6 Performance of Actual Intakes.

11.7 Shock-Boundary Layer Interaction.

11.8 Oblique Shock Wave Incident on Flat Plate.

11.9 Normal Shocks in Ducts.

11.10 External Supersonic Compression.

11.11 Two-Shock Intakes.

11.12 Multi-Shock Intakes.

11.13 Isentropic Compression.

11.14 Limits of External Compression.

11.15 External Shock Attachment.

11.16 Internal Shock Attachment.

11.17 Pressure Loss.

11.18 Supersonic Combustion.

11.19 Summary.

12 Jets.

12.1 Introduction.

12.2 Mathematical Treatment of Jet Profiles.

12.3 Theory of Turbulent Jets.

12.4 Experimental Methods for Studying Jets and the Techniques Used for Analysis.

12.5 Expansion Levels of Jets.

12.6 Control of Jets.

12.7 Summary.

Appendix.

References.

Index.

最近チェックした商品