Graphical Models : Representations for Learning, Reasoning and Data Mining (Wiley Series in Computational Statistics) (2ND)

個数:
  • ポイントキャンペーン

Graphical Models : Representations for Learning, Reasoning and Data Mining (Wiley Series in Computational Statistics) (2ND)

  • ウェブストア価格 ¥32,022(本体¥29,111)
  • John Wiley & Sons Inc(2009/10発売)
  • 外貨定価 US$ 153.95
  • 【ウェブストア限定】洋書・洋古書ポイント5倍対象商品(~2/28)
  • ポイント 1,455pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 393 p.
  • 言語 ENG
  • 商品コード 9780470722107
  • DDC分類 006.312

基本説明

Provides a self-contained introduction to learning relational, probabilistic and possibilistic networks from data.

Full Description

Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.

Contents

Preface. 1 Introduction.

1.1 Data and Knowledge.

1.2 Knowledge Discovery and Data Mining.

1.3 Graphical Models.

1.4 Outline of this Book.

2 Imprecision and Uncertainty.

2.1 Modeling Inferences.

2.2 Imprecision and Relational Algebra.

2.3 Uncertainty and Probability Theory.

2.4 Possibility Theory and the Context Model.

3 Decomposition.

3.1 Decomposition and Reasoning.

3.2 Relational Decomposition.

3.3 Probabilistic Decomposition.

3.4 Possibilistic Decomposition.

3.5 Possibility versus Probability.

4 Graphical Representation.

4.1 Conditional Independence Graphs.

4.2 Evidence Propagation in Graphs.

5 Computing Projections.

5.1 Databases of Sample Cases.

5.2 Relational and Sum Projections.

5.3 Expectation Maximization.

5.4 Maximum Projections.

6 Naive Classifiers.

6.1 Naive Bayes Classifiers.

6.2 A Naive Possibilistic Classifier.

6.3 Classifier Simplification.

6.4 Experimental Evaluation.

7 Learning Global Structure.

7.1 Principles of Learning Global Structure.

7.2 Evaluation Measures.

7.3 Search Methods.

7.4 Experimental Evaluation.

8 Learning Local Structure.

8.1 Local Network Structure.

8.2 Learning Local Structure.

8.3 Experimental Evaluation.

9 Inductive Causation.

9.1 Correlation and Causation.

9.2 Causal and Probabilistic Structure.

9.3 Faithfulness and Latent Variables.

9.4 The Inductive Causation Algorithm.

9.5 Critique of the Underlying Assumptions.

9.6 Evaluation.

10 Visualization.

10.1 Potentials.

10.2 Association Rules.

11 Applications.

11.1 Diagnosis of Electrical Circuits.

11.2 Application in Telecommunications.

11.3 Application at Volkswagen.

11.4 Application at DaimlerChrysler.

A Proofs of Theorems.

A.1 Proof of Theorem 4.1.2.

A.2 Proof of Theorem 4.1.18.

A.3 Proof of Theorem 4.1.20.

A.4 Proof of Theorem 4.1.26.

A.5 Proof of Theorem 4.1.28.

A.6 Proof of Theorem 4.1.30.

A.7 Proof of Theorem 4.1.31.

A.8 Proof of Theorem 5.4.8.

A.9 Proof of Lemma .2.2.

A.10 Proof of Lemma .2.4.

A.11 Proof of Lemma .2.6.

A.12 Proof of Theorem 7.3.1.

A.13 Proof of Theorem 7.3.2.

A.14 Proof of Theorem 7.3.3.

A.15 Proof of Theorem 7.3.5.

A.16 Proof of Theorem 7.3.7.

B Software Tools.

Bibliography.

Index.

最近チェックした商品