Principles of Heating, Ventilation, and Air Conditioning in Buildings

個数:

Principles of Heating, Ventilation, and Air Conditioning in Buildings

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合、分割発送となる場合がございます。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 600 p.
  • 言語 ENG
  • 商品コード 9780470624579
  • DDC分類 697

基本説明

Includes coverage on key tropics including environmental impact, air quality issues, green design considerations and coverage of the latest ASHRAE guidelines.

Full Description

Principles of HVAC in Buildings by J. W. Mitchell and J. E. Braun provides foundational knowledge for the behavior and analysis of HVAC systems and related devices.  The emphasis is on the application of engineering principles, and features a tight integration of physical descriptions with a software program that allows performance to be directly calculated, with results that provide insight into actual behavior.  The examples, end-of-chapter problems, and design projects are more than exercises; they represent situations that an engineer might face in practice and are selected to illustrate the complex and integrated nature of an HVAC system or piece of equipment.  Coverage of material applicable to the field is broad: a Fundamentals section on thermodynamics, fluid flow, heat transfer, and psychrometrics; types of HVAC systems and components; comfort and air quality criteria; a Loads section on weather data processing; design heating and cooling loads; an Equipment section on air and water distribution systems, heating and cooling coils, cooling towers, refrigeration equipment, and a Design and Control section on seasonal energy use, control techniques, supervisory control, the HVAC design process, and the rules of thumb often used in design.  The textbook provides a foundation for students and practicing engineers to design HVAC systems for buildings.  In addition, there is extensive supplemental on-line material that provides more in-depth and comprehensive treatment of equipment and component modeling and performance that is geared towards current and future equipment design engineers.

Contents

Fundamentals

1 Introduction to HVAC Systems 1

1.1 Systems and Definitions 1

1.2 History of Air Conditioning 3

1.3 Trends in Energy Use and Impact 5

1.4 HVAC System Design and Operation 7

1.5 Energy Costs 

1.6 Book Philosophy and Organization 11

1.7 Units 13

1.8 Summary 14

Problems 14

2 System Analysis Techniques and the Use of EES 15

2.1 Introduction 15

2.2 Introduction to EES 19

2.3 Common Problems Encountered when Using EES 22

2.4 Curve Fitting Using EES 26

2.5 Optimization Using EES 29

2.6 Successful Problem Solving Using EES 31

2.7 Summary 34

Problems 35

3 Thermodynamics and Fluid Flow in HVAC Applications 39

3.1 Introduction 39

3.2 Conservation of Mass 39

3.3 Conservation of Energy 41

3.4 Thermodynamic Properties of Pure Substances 43

3.5 Thermodynamic Limits on Performance 45

3.6 Thermodynamic Work Relations for Pure Substances 47

3.7 Thermodynamic Relations for Fluid Flow 48

3.8 Energy Loss Mechanisms in Fluid Flow 54

3.9 Summary 59

Problems 59

4 Heat Transfer in HVAC Applications 61

4.1 Introduction 61

4.2 Conduction Heat Transfer 61

4.3 Convection Heat Transfer 67

4.4 Thermal Radiation Heat Transfer 76

4.5 Transient Heat Transfer 83

4.6 Combined-Mode Heat Transfer 87

4.7 Summary 92

Problems 92

5 Psychrometrics for HVAC Applications 95

5.1 Introduction 95

5.2 Moist Air Properties 95

5.3 The Psychrometric Chart 102

5.4 The Standard Atmosphere 103

5.5 Determining Psychrometric Properties Using EES 105

5.6 Psychrometric Applications 109

5.7 Heat and Mass Transfer for Air-Water Vapor Mixtures 126

5.8 Summary 132

Problems 133

6 Overview of HVAC Systems 137

6.1 Introduction 137

6.2 Overview of HVAC Systems and Components 137

6.3 Energy Comparison Between CAV and VAV Systems 144

6.4 HVAC System Performance Calculations 145

6.5 ASHRAE Load Calculation Equations 153

6.6 HVAC System Improvements and Alternatives 156

6.7 Summary 167

Problems 167

7 Thermal Comfort and Air Quality 171

7.1 Introduction 171

7.2 Criteria for Occupant Comfort Inside Buildings 171

7.3 Criteria for Indoor Air Quality 179

7.4 Summary 182

Problems 183

Building Heating and Cooling Loads

8 Weather Data, Statistics, and Processing 185

8.1 Introduction 185

8.2 Design Temperature Parameters for HVAC Systems 186

8.3 Ambient Temperature and Humidity Correlations 190

8.4 Degree-Day Data and Correlations 195

8.5 Bin Method Data 200

8.6 Ground Temperature Correlations 202

8.7 Solar Radiation Fundamentals 205

8.8 Clear-Sky Solar Radiation 213

8.9 Weather Records 216

8.10 Summary 219

Problems 219

9 Components of Building Heat Loss and Gain 221

9.1 Introduction 221

9.2 Thermal Resistance and Conductance of Building Elements 222

9.3 Heat Flow Through Opaque Exterior Surfaces 225

9.4 Transient Heat Flow Through Building Elements 228

9.5 Heat Flow Through Building Elements—Transfer Function Approach 234

9.6 Heat Flow Through Building Elements—Thermal Network Approach 240

9.7 Heat Flow Through Glazing 244

9.8 Energy Flows Due to Ventilation and Infiltration 247

9.9 Internal Thermal Gains 256

9.10 Summary 258

Problems 259

10 Heating and Cooling Loads 265

10.1 Introduction 265

10.2 Design Heating Load 266

10.3 Design Sensible Cooling Load Using the Heat Balance Method 268

10.4 The Heat Balance Method Using the Thermal Network Approach 273

10.5 Design Latent Cooling Load 276

10.6 Design Loads Using the Thermal Network Method 277

10.7 Summary 286

Problems 287

Equipment

11 Air Distribution Systems 289

11.1 Introduction 289

11.2 Pressure Drops in Duct Systems 290

11.3 Design Methods for Air Distribution Systems 298

11.4 Fan Characteristics 311

11.5 Interaction Between Fan and Distribution System 315

11.6 Air Distribution in Zones 318

11.7 Heat Losses and Gains for Ducts 320

11.8 Air Leakage from Ducts 322

11.9 Summary 323

Problems 324

12 Liquid Distribution Systems 329

12.1 Introduction 329

12.2 Head Loss and Pressure Drop in Liquid Distribution Systems 329

12.3 Water Distribution Systems 332

12.4 Steam Distribution Systems 335

12.5 Pump Characteristics 338

12.6 Heat Loss and Gain for Pipes 340

12.7 Summary 342

Problems 342

13 Heat Exchangers for Heating and Cooling Applications 345

13.1 Introduction 345

13.2 Overall Heat Transfer Conductance 347

13.3 Heat Exchanger Thermal Performance 349

13.4 Heating Coil Selection Process 355

13.5 Cooling Coil Processes 361

13.6 Cooling Coil Performance Using a Heat Transfer Analogy 362

13.7 Cooling Coil Selection Procedure 368

13.8 Summary 376

Problems 376

14 Cooling Towers and Desiccant Dehumidification Systems 379

14.1 Introduction 379

14.2 Cooling Towers 379

14.3 Cooling Tower Performance using an Analogy to Heat Transfer 381

14.4 Cooling Tower Selection Procedure 385

14.5 Desiccant Dehumidifiers 388

14.6 Desiccant Dehumidification Systems 393

14.7 Summary 397

Problems 398

15 Vapor Compression Refrigeration and Air-Conditioning Systems 401

15.1 Introduction 401

15.2 Vapor Compression System 401

15.3 Refrigerants 407

15.4 Vapor Compression System Compressors 412

15.5 Vapor Compression System Performance 416

15.6 Alternative Vapor Compression System Concepts 421

15.7 Summary 429

Problems 429

16 Heat Pump Systems 433

16.1 Introduction 433

16.2 Air Source Heat Pumps 435

16.3 Ground Source Heat Pumps 441

16.4 Water Loop Heat Pump Systems 443

16.5 Summary 444

Problems 444

17 Thermal Storage Systems 447

17.1 Introduction 447

17.2 Ice Storage Systems 451

17.3 Chilled Water Storage Systems 452

17.4 Cold Air Distribution Systems 453

17.5 Building Thermal Storage 454

17.6 Thermal Storage Control Strategies 456

17.7 Performance Characteristics of Ice Storage Tanks 460

17.8 Selection of Ice Storage Capacity 466

17.9 Summary 471

Problems 471

Design and Control of HVAC Systems

18 Building and HVAC Energy Use 475

18.1 Introduction 475

18.2 Weather Data for Energy Use Calculations 475

18.3 Degree-day Method for Estimation of Heating Energy Use 476

18.4 Bin Method for Estimating Energy Use 479

18.5 Simulation Methods for Estimating Energy Use 486

18.6 Thermal Network Method for Estimating Building Energy Use 487

18.7 Summary 491

Problems 492

19 HVAC Control Principles 497

19.1 Introduction 497

19.2 Feedback Control Techniques 500

19.3 Implementation of Local Loop Control 517

19.4 Advanced Control Techniques 518

19.5 Summary 521

Problems 521

20 Supervisory Control 523

20.1 Introduction 523

20.2 Introduction to Optimal Operation of HVAC Systems 525

20.3 Optimization Statement for All-Electric Cooling Plants Without Storage 531

20.4 Model-based Optimization Procedure 531

20.5 Quadratic Optimization Procedure 533

20.6 Simplified Control Strategies for System Components 536

20.7 Optimization Statement for All-Electric Cooling Plants with Storage 544

20.8 Simplified Control Strategies for Systems with Storage 545

20.9 Methods for Forecasting Building Loads 548

20.10 Summary 550

Problems 551

21 Designing HVAC Systems 555

21.1 Introduction 555

21.2 Design Methodology 555

21.3 Life-Cycle Cost 562

21.4 Rules of Thumb 564

21.5 Design Problems for the Students 565

Problems 566

Appendix A: Thermal Property Values 573

Appendix B: Psychrometric Charts for Sea-Level Conditions 575

Appendix C: Wall and Roof Property Data 577

References 583

Nomenclature 589

Index 595

最近チェックした商品