ランダム信号と応用カルマンフィルタリング入門(第4版)<br>Introduction to Random Signals and Applied Kalman Filtering with MATLAB Exercises (ISV) (4TH)

個数:

ランダム信号と応用カルマンフィルタリング入門(第4版)
Introduction to Random Signals and Applied Kalman Filtering with MATLAB Exercises (ISV) (4TH)

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 383 p.
  • 言語 ENG
  • 商品コード 9780470609699
  • DDC分類 621.3822

基本説明

Written in a manner that flows with how course is taught; evolving gradually from background material into the main topic of Kalman filtering.

Full Description

Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises, 4th Edition

Advances in computers and personal navigation systems have greatly expanded the applications of Kalman filters. A Kalman filter uses information about noise and system dynamics to reduce uncertainty from noisy measurements. Common applications of Kalman filters include such fast-growing fields as autopilot systems, battery state of charge (SoC) estimation, brain-computer interface, dynamic positioning, inertial guidance systems, radar tracking, and satellite navigation systems.

Brown and Hwang's bestselling textbook introduces the theory and applications of Kalman filters for senior undergraduates and graduate students. This revision updates both the research advances in variations on the Kalman filter algorithm and adds a wide range of new application examples. The book emphasizes the application of computational software tools such as MATLAB. The companion website includes M-files to assist students in applying MATLAB to solving end-of-chapter homework problems.

Contents

PART 1: RANDOM SIGNALS BACKGROUND
Chapter 1 Probability and Random Variables: A Review
Chapter 2 Mathematical Description of Random Signals
Chapter 3 Linear Systems Response, State-space Modeling and Monte Carlo Simulation
PART 2: KALMAN FILTERING AND APPLICATIONS
Chapter 4 Discrete Kalman Filter Basics
Chapter 5 Intermediate Topics on Kalman Filtering
Chapter 6 Smoothing and Further Intermediate Topics
Chapter 7 Linearization, Nonlinear Filtering and Sampling Bayesian Filters
Chapter 8 the "Go-Free" Concept, Complementary Filter and Aided Inertial Examples
Chapter 9 Kalman Filter Applications to the GPS and Other Navigation Systems
APPENDIX A. Laplace and Fourier Transforms
APPENDIX B. The Continuous Kalman Filter

最近チェックした商品