Engineering Optimization : An Introduction with Metaheuristic Applications

個数:

Engineering Optimization : An Introduction with Metaheuristic Applications

  • 提携先の海外書籍取次会社に在庫がございます。通常3週間で発送いたします。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合が若干ございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • ≪洋書のご注文について≫ 「海外取次在庫あり」「国内在庫僅少」および「国内仕入れ先からお取り寄せいたします」表示の商品でもクリスマス前(12/20~12/25)および年末年始までにお届けできないことがございます。あらかじめご了承ください。

  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 347 p.
  • 言語 ENG
  • 商品コード 9780470582466
  • DDC分類 620.0015196

Full Description

An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms.

The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts:



Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method
Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search
Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization

Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail.

Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Contents

List of Figures. Preface.

Acknowledgments.

Introduction.

PART I Foundations of Optimization and Algorithms.

1.1 Before 1900.

1.2 Twentieth Century.

1.3 Heuristics and Metaheuristics.

Exercises.

2 Engineering Optimization.

2.1 Optimization.

2.2 Type of Optimization.

2.3 Optimization Algorithms.

2.4 Metaheuristics.

2.5 Order Notation.

2.6 Algorithm Complexity.

2.7 No Free Lunch Theorems.

Exercises.

3 Mathematical Foundations.

3.1 Upper and Lower Bounds.

3.2 Basic Calculus.

3.3 Optimality.

3.4 Vector and Matrix Norms.

3.5 Eigenvalues and Definiteness.

3.6 Linear and Affine Functions.

3.7 Gradient and Hessian Matrices.

3.8 Convexity.

Exercises.

4 Classic Optimization Methods I.

4.1 Unconstrained Optimization.

4.2 Gradient-Based Methods.

4.3 Constrained Optimization.

4.4 Linear Programming.

4.5 Simplex Method.

4.6 Nonlinear Optimization.

4.7 Penalty Method.

4.8 Lagrange Multipliers.

4.9 Karush-Kuhn-Tucker Conditions.

Exercises.

5 Classic Optimization Methods II.

5.1 BFGS Method.

5.2 Nelder-Mead Method.

5.3 Trust-Region Method.

5.4 Sequential Quadratic Programming.

Exercises.

6 Convex Optimization.

6.1 KKT Conditions.

6.2 Convex Optimization Examples.

6.3 Equality Constrained Optimization.

6.4 Barrier Functions.

6.5 Interior-Point Methods.

6.6 Stochastic and Robust Optimization.

Exercises.

7 Calculus of Variations.

7.1 Euler-Lagrange Equation.

7.2 Variations with Constraints.

7.3 Variations for Multiple Variables.

7.4 Optimal Control.

Exercises.

8 Random Number Generators.

8.1 Linear Congruential Algorithms.

8.2 Uniform Distribution.

8.3 Other Distributions.

8.4 Metropolis Algorithms.

Exercises.

9 Monte Carlo Methods.

9.1 Estimating p.

9.2 Monte Carlo Integration.

9.3 Importance of Sampling.

Exercises.

10 Random Walk and Markov Chain.

10.1 Random Process.

10.2 Random Walk.

10.3 Lévy Flights.

10.4 Markov Chain.

10.5 Markov Chain Monte Carlo.

10.6 Markov Chain and Optimisation.

Exercises.

PART II Metaheuristic Algorithms.

11 Genetic Algorithms.

11.1 Introduction.

11.2 Genetic Algorithms.

11.3 Implementation.

Exercises.

12 Simulated Annealing.

12.1 Annealing and Probability.

12.2 Choice of Parameters.

12.3 SA Algorithm.

12.4 Implementation.

Exercises.

13 Ant Algorithms.

13.1 Behaviour of Ants.

13.2 Ant Colony Optimization.

13.3 Double Bridge Problem.

13.4 Virtual Ant Algorithm.

Exercises.

14 Bee Algorithms.

14.1 Behavior of Honey Bees.

14.2 Bee Algorithms.

14.3 Applications.

Exercises.

15 Particle Swarm Optimization.

15.1 Swarm Intelligence.

15.2 PSO algorithms.

15.3 Accelerated PSO.

15.4 Implementation.

15.5 Constraints.

Exercises.

16 Harmony Search.

16.1 Music-Based Algorithms.

16.2 Harmony Search.

16.3 Implementation.

Exercises.

17 Firefly Algorithm.

17.1 Behaviour of Fireflies.

17.2 Firefly-Inspired Algorithm.

17.3 Implementation.

Exercises.

PART III Applications.

18 Multiobjective Optimization.

18.1 Pareto Optimality.

18.2 Weighted Sum Method.

18.3 Utility Method.

18.4 Metaheuristic Search.

18.5 Other Algorithms.

Exercises.

19 Engineering Applications.

19.1 Spring Design.

19.2 Pressure Vessel.

19.3 Shape Optimization.

19.4 Optimization of Eigenvalues and Frequencies.

19.5 Inverse Finite Element Analysis.

Exercises.

Appendices.

Appendix A: Test Problems in Optimization.

Appendix B: Matlab® Programs.

B.1 Genetic Algorithms.

B.2 Simulated Annealing.

B.3 Particle Swarm Optimization.

B.4 Harmony Search.

B.5 Firefly Algorithm.

B.6 Large Sparse Linear Systems.

B.7 Nonlinear Optimization.

B.7.1 Spring Design.

B.7.2 Pressure Vessel.

Appendix C: Glossary.

Appendix D: Problem Solutions.

References.

Index.

最近チェックした商品