Detection, Estimation, and Modulation Theory : Detection, Estimation, and Filtering Theory (2ND)

個数:
電子版価格
¥16,056
  • 電子版あり

Detection, Estimation, and Modulation Theory : Detection, Estimation, and Filtering Theory (2ND)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 1151 p.
  • 言語 ENG
  • 商品コード 9780470542965
  • DDC分類 621.3822

Full Description

Originally published in 1968, Harry Van Trees's Detection, Estimation, and Modulation Theory, Part I is one of the great time-tested classics in the field of signal processing. Highly readable and practically organized, it is as imperative today for professionals, researchers, and students in optimum signal processing as it was over thirty years ago. The second edition is a thorough revision and expansion almost doubling the size of the first edition and accounting for the new developments thus making it again the most comprehensive and up-to-date treatment of the subject. With a wide range of applications such as radar, sonar, communications, seismology, biomedical engineering, and radar astronomy, among others, the important field of detection and estimation has rarely been given such expert treatment as it is here. Each chapter includes section summaries, realistic examples, and a large number of challenging problems that provide excellent study material. This volume which is Part I of a set of four volumes is the most important and widely used textbook and professional reference in the field.

Contents

Preface xv

Preface to the First Edition xix

1 Introduction 1

1.1 Introduction 1

1.2 Topical Outline 1

1.3 Possible Approaches 11

1.4 Organization 14

2 Classical Detection Theory 17

2.1 Introduction 17

2.2 Simple Binary Hypothesis Tests 20

2.3 m Hypotheses 51

2.4 Performance Bounds and Approximations 63

2.5 Monte Carlo Simulation 80

2.6 Summary 109

2.7 Problems 110

3 General Gaussian Detection 125

3.1 Detection of Gaussian Random Vectors 126

3.2 Equal Covariance Matrices 138

3.3 Equal Mean Vectors 174

3.4 General Gaussian 197

3.5 m Hypotheses 209

3.6 Summary 213

3.7 Problems 215

4 Classical Parameter Estimation 230

4.1 Introduction 230

4.2 Scalar Parameter Estimation 232

4.3 Multiple Parameter Estimation 293

4.4 Global Bayesian Bounds 332

4.5 Composite Hypotheses 348

4.6 Summary 375

4.7 Problems 377

5 General Gaussian Estimation 400

5.1 Introduction 400

5.2 Nonrandom Parameters 401

5.3 Random Parameters 483

5.4 Sequential Estimation 495

5.5 Summary 507

5.6 Problems 510

6 Representation of Random Processes 519

6.1 Introduction 519

6.2 Orthonormal Expansions: Deterministic Signals 520

6.3 Random Process Characterization 528

6.4 Homogeous Integral Equations and Eigenfunctions 540

6.5 Vector Random Processes 564

6.6 Summary 568

6.7 Problems 569

7 Detection of Signals-Estimation of Signal Parameters 584

7.1 Introduction 584

7.2 Detection and Estimation in White Gaussian Noise 591

7.3 Detection and Estimation in Nonwhite Gaussian Noise 629

7.4 Signals with Unwanted Parameters: The Composite Hypothesis Problem 675

7.5 Multiple Channels 712

7.6 Multiple Parameter Estimation 716

7.7 Summary 721

7.8 Problems 722

8 Estimation of Continuous-Time Random Processes 771

8.1 Optimum Linear Processors 771

8.2 Realizable Linear Filters: Stationary Processes, Infinite Past: Wiener Filters 787

8.3 Gaussian-Markov Processes: Kalman Filter 807

8.4 Bayesian Estimation of Non-Gaussian Models 842

8.5 Summary 852

8.6 Problems 855

9 Estimation of Discrete-Time Random Processes 880

9.1 Introduction 880

9.2 Discrete-Time Wiener Filtering 882

9.3 Discrete-Time Kalman Filter 919

9.4 Summary 1016

9.5 Problems 1016

10 Detection of Gaussian Signals 1030

10.1 Introduction 1030

10.2 Detection of Continuous-Time Gaussian Processes 1030

10.3 Detection of Discrete-Time Gaussian Processes 1067

10.4 Summary 1076

10.5 Problems 1077

11 Epilogue 1084

11.1 Classical Detection and Estimation Theory 1084

11.2 Representation of Random Processes 1093

11.3 Detection of Signals and Estimation of Signal Parameters 1095

11.4 Linear Estimation of Random Processes 1098

11.5 Observations 1105

11.6 Conclusion 1106

Appendix A: Probability Distributions and Mathematical Functions 1107

Appendix B: Example Index 1119

References 1125

Index 1145

最近チェックした商品