計量ファイナンスの最先端<br>Frontiers in Quantitative Finance : Volatility and Credit Risk Modeling (Wiley Finance)

個数:

計量ファイナンスの最先端
Frontiers in Quantitative Finance : Volatility and Credit Risk Modeling (Wiley Finance)

  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 299 p.
  • 言語 ENG
  • 商品コード 9780470292921
  • DDC分類 332.015195

Full Description


The Petit D'euner de la Finance-which author Rama Cont has been co-organizing in Paris since 1998-is a well-known quantitative finance seminar that has progressively become a platform for the exchange of ideas between the academic and practitioner communities in quantitative finance. Frontiers in Quantitative Finance is a selection of recent presentations in the Petit D'euner de la Finance. In this book, leading quants and academic researchers cover the most important emerging issues in quantitative finance and focus on portfolio credit risk and volatility modeling.

Contents

Preface. About the Editor. About the Contributors. PART ONEPricing and Volatility Modeling. CHAPTER 1: A Moment Approach to Static Arbitrage ( Alexandre d'Aspremont ). 1.1 Introduction. 1.2 No-Arbitrage Conditions. 1.3 Example. 1.4 Conclusion. CHAPTER 2: On Black-Scholes Implied Volatility at Extreme Strikes ( Shalom Benaim, Peter Friz, and Roger Lee ). 2.1 Introduction. 2.2 The Moment Formula. 2.3 Regular Variation and the Tail-Wing Formula. 2.4 Related Results. 2.5 Applications. 2.6 CEV and SABR. CHAPTER 3: Dynamic Properties of Smile Models ( Lorenzo Bergomi ). 3.1 Introduction. 3.2 Some Standard Smile Models. 3.3 A New Class of Models for Smile Dynamics. 3.4 Pricing Examples. 3.5 Conclusion. CHAPTER 4: A Geometric Approach to the Asymptotics of Implied Volatility ( Pierre Henry-Labord'ere ). 4.1 Volatility Asymptotics in Stochastic Volatility Models. 4.2 Heat Kernel Expansion. 4.3 Geometry of Complex Curves and Asymptotic Volatility. 4.4 lambda -SABR Model and Hyperbolic Geometry. 4.5 SABR Model with beta = 0 , 1. 4.6 Conclusions and Future Work. 4.7 Appendix A: Notions in Differential Geometry. 4.8 Appendix B: Laplace Integrals in Many Dimensions. CHAPTER 5: Pricing, Hedging, and Calibration in Jump-Diffusion Models ( Peter Tankov and Ekaterina Voltchkova ). 5.1 Overview of Jump-Diffusion Models. 5.2 Pricing European Options via Fourier Transform. 5.3 Integro-differential Equations for Barrier and American Options. 5.4 Hedging Jump Risk. 5.5 Model Calibration. PART TWO: Credit Risk. CHAPTER 6: Modeling Credit Risk ( L. C. G. Rogers ). 6.1 What Is the Problem? 6.2 Hazard Rate Models. 6.3 Structural Models. 6.4 Some Nice Ideas. 6.5 Conclusion. CHAPTER 7: An Overview of Factor Modeling for CDO Pricing ( Jean-Paul Laurent and Areski Cousin ). 7.1 Pricing of Portfolio Credit Derivatives. 7.2 Factor Models for the Pricing of CDO Tranches. 7.3 A Review of Factor Approaches to the Pricing of CDOs. 7.4 Conclusion. CHAPTER 8: Factor Distributions Implied by Quoted CDO Spreads ( Erik Schlogl and Lutz Schlogl ). 8.1 Introduction. 8.2 Modeling. 8.3 Examples. 8.4 Conclusion. 8.5 Appendix: Some Useful Results on Hermite Polynomials under Linear Coordinate Transforms. CHAPTER 9: Pricing CDOs with a Smile: The Local Correlation Model ( Julien Turc and Philippe Very ). 9.1 The Local Correlation Model. 9.2 Simplification under the Large Pool Assumption. 9.3 Building the Local Correlation Function without the Large Pool Assumption. 9.4 Pricing and Hedging with Local Correlation. CHAPTER 10: Portfolio Credit Risk: Top-Down versus Bottom-Up Approaches ( Kay Giesecke ). 10.1 Introduction. 10.2 Portfolio Credit Models. 10.3 Information and Specification. 10.4 Default Distribution. 10.5 Calibration. 10.6 Conclusion. CHAPTER 11: Forward Equations for Portfolio Credit Derivatives ( Rama Cont and Ioana Savescu ). 11.1 Portfolio Credit Derivatives. 11.2 Top-Down Models for CDO Pricing. 11.3 Effective Default Intensity. 11.4 A Forward Equation for CDO Pricing. 11.5 Recovering Forward Default Intensities from Tranche Spreads. 11.6 Conclusion. Index.

最近チェックした商品