Evolving Intelligent Systems : Methodology and Applications (Ieee Press Series on Computational Intelligence)

個数:
  • ポイントキャンペーン

Evolving Intelligent Systems : Methodology and Applications (Ieee Press Series on Computational Intelligence)

  • ウェブストア価格 ¥34,318(本体¥31,199)
  • IEEE(2010/03発売)
  • 外貨定価 US$ 166.95
  • 【ウェブストア限定】サマー!ポイント5倍キャンペーン 対象商品(~7/21)※店舗受取は対象外
  • ポイント 1,555pt
  • 在庫がございません。海外の書籍取次会社を通じて出版社等からお取り寄せいたします。
    通常6~9週間ほどで発送の見込みですが、商品によってはさらに時間がかかることもございます。
    重要ご説明事項
    1. 納期遅延や、ご入手不能となる場合がございます。
    2. 複数冊ご注文の場合は、ご注文数量が揃ってからまとめて発送いたします。
    3. 美品のご指定は承りかねます。

    ●3Dセキュア導入とクレジットカードによるお支払いについて
  • 【入荷遅延について】
    世界情勢の影響により、海外からお取り寄せとなる洋書・洋古書の入荷が、表示している標準的な納期よりも遅延する場合がございます。
    おそれいりますが、あらかじめご了承くださいますようお願い申し上げます。
  • ◆画像の表紙や帯等は実物とは異なる場合があります。
  • ◆ウェブストアでの洋書販売価格は、弊社店舗等での販売価格とは異なります。
    また、洋書販売価格は、ご注文確定時点での日本円価格となります。
    ご注文確定後に、同じ洋書の販売価格が変動しても、それは反映されません。
  • 製本 Hardcover:ハードカバー版/ページ数 444 p.
  • 言語 ENG
  • 商品コード 9780470287194
  • DDC分類 006.3

Full Description

From theory to techniques, the first all-in-one resource for EIS

There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications.



Explains the following fundamental approaches for developing evolving intelligent systems (EIS):




the Hierarchical Prioritized Structure
the Participatory Learning Paradigm


the Evolving Takagi-Sugeno fuzzy systems (eTS+)


the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm




Emphasizes the importance and increased interest in online processing of data streams


Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation


Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems


Introduces an integrated approach to incremental (real-time) feature extraction and classification


Proposes a study on the stability of evolving neuro-fuzzy recurrent networks


Details methodologies for evolving clustering and classification


Reveals different applications of EIS to address real problems in areas of:




evolving inferential sensors in chemical and petrochemical industry


learning and recognition in robotics




Features downloadable software resources



Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.

Contents

PREFACE. Evolving Intelligent Systems.

The Editors.

PART I: METHODOLOGY.

Evolving Fuzzy Systems.

1. Learning Methods for Evolving Intelligent Systems (R. Yager).

2. Evolving Takagi-Sugeno Fuzzy Systems from Data Streams (eTS+) (P. Angelov).

3. Fuzzy Models of Evolvable Granularity (W. Pedrycz).

4. Evolving Fuzzy Modeling Using Participatory Learning (E. Lima, M. Hell, R. Ballini, and F. Gomide).

5. Towards Robust and Transparent Evolving Fuzzy Systems (E. Lughofer).

6. The building of fuzzy systems in real-time: towards interpretable fuzzy rules (A. Dourado, C. Pereira, and V. Ramos).

Evolving Neuro-Fuzzy Systems.

7. On-line Feature Selection for Evolving Intelligent Systems (S. Ozawa, S. Pang, and N. Kasabov).

8. Stability Analysis of an On-Line Evolving Neuro-Fuzzy Network (J. de J. Rubio Avila).

9. On-line Identification of Self-organizing Fuzzy Neural Networks for Modelling Time-varying Complex Systems (G. Prasad, T. M. McGinnity, and G. Leng).

10. Data Fusion via Fission for the Analysis of Brain Death (L. Li, Y. Saito, D. Looney, T. Tanaka, J. Cao, and D. Mandic).

Evolving Fuzzy Clustering and Classification.

11. Similarity Analysis and Knowledge Acquisition by Use of Evolving Neural Models and Fuzzy Decision (G. Vachkov).

12. An Extended version of Gustafson-Kessel Clustering Algorithm for Evolving Data Stream Clustering (D. Filev, and O. Georgieva).

13. Evolving Fuzzy Classification of Non-Stationary Time Series (Y. Bodyanskiy, Y. Gorshkov, I. Kokshenev, and V. Kolodyazhniy).

PART II: APPLICATIONS OF EIS.

14. Evolving Intelligent Sensors in Chemical Industry (A. Kordon et al.).

15. Recognition of Human Grasps by Fuzzy Modeling (R Palm, B Kadmiry, and B Iliev).

16. Evolutionary Architecture for Lifelong Learning and Real-time Operation in Autonomous Robots (R. J. Duro, F. Bellas and J.A. Becerra) 17. Applications of Evolving Intelligent Systems to Oil and Gas Industry (J. J. Macias Hernandez et al.).

Conclusion.

最近チェックした商品